Self-Supervised Methods for Noise-Removal

Related tags

Deep LearningSSMNR
Overview

SSMNR | Self-Supervised Methods for Noise Removal

Image denoising is the task of removing noise from an image, which can be formulated as the task of separating the noise signal from the meaningful information in images. Traditionally, this has been addressed both by spatial domain methods and transfer domain methods. However, from around 2016 onwards, image denoising techniques based on neural networks have started to outperfom these methods, with CNN-based denoisers obtaining impressive results.

One limitation to the use of neural-network based denoisers in many applications is the need for extensive, labeled datasets containing both noised images, and ground-truth, noiseless images. In answer to this, multiple works have explored the use of semi-supervised approaches for noise removal, requiring either noised image pairs but no clean target images (Noise2Noise) or, more recently, no additional data than the noised image (Noise2Void). This project aims at studying these approaches for the task of noise removal, and re-implementing them in PyTorch.

This repository contains our code for this task. This code is heavily based on both the original implementation of the Noise2Void article available here, on other implementations and PyTorch/TensorFlow reproducibility challenges here and here, on the U-NET Transformer architecture available here, as well as some base code from our teachers for a project on bird species recognition.

Data

Data used to train and evaluate the algorithm consists mostly in:

No noiseless data was used to train the models.

Usage

To reproduce these results, please start by cloning the repository locally:

git clone https://github.com/bglbrt/SSMNR.git

Then, install the required libraries:

pip install -r requirements.txt

Denoising images (with provided, pre-trained weights)

To denoise an image or multiple images from a specified directory, run:

python main.py --mode denoise --model "model" --images_path "path/to/image/or/dir" --weights "path/to/model/weights"

Provided pre-trained weights are formatted as: "models/model_"+model_name+_+noise_type+sigma+".pth".

Available weights are:

  • weights for the N2V model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G15.pth
    • models/model_N2V_G25.pth
    • models/model_N2V_G35.pth
    • models/model_N2V_G50.pth
  • weights for the N2VT (N2V with U-NET Transformer) model:
    • models/model_N2V_G5.pth (please contact us to obtain weights)
    • models/model_N2V_G10.pth (please contact us to obtain weights)
    • models/model_N2V_G25.pth (please contact us to obtain weights)

Options available for denoising are:

  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --images_path: Path to image or directory of images to denoise.
    • default: None
  • --model: Name of model for noise removal
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training.
    • default: None
  • --slide: Sliding window size for denoising and evaluation
    • default: 32
  • --use_cuda: Use of GPU or CPU
    • default: 32

Evaluation

To evaluate a model using a dataset in a specified directory, run:

python main.py --mode eval --model "model" --images_path "path/to/image/or/dir" --weights "path/to/model/weights"

Note that the data located at path/to/image/or/dir must include a folder named original with noiseless images.

Evaluation methods include:

  • N2V (Noise2Void with trained weights)
  • N2VT (Noise2VoidTransformer with trained weights)
  • BM3D (Block-Matching and 3D Filtering)
  • MEAN (5x5 mean filter)
  • MEDIAN (5x5 median filter)

Provided pre-trained weights for N2V and N2VT are formatted as: "models/model_"+model_name+_+noise_type+sigma+".pth".

Available weights are:

  • weights for the N2V model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G15.pth
    • models/model_N2V_G25.pth
    • models/model_N2V_G35.pth
    • models/model_N2V_G50.pth
  • weights for the N2VT (N2V with U-NET Transformer) model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G25.pth

Options available for evaluation are:

  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --images_path: Path to image or directory of images to evaluate.
    • default: None
  • --model: Name of model for noise removal
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training.
    • default: None
  • --slide: Sliding window size for denoising and evaluation
    • default: 32
  • --use_cuda: Use of GPU or CPU
    • default: 32

Training

To train weights for the N2V and N2VT models using data located in the data folder, run:

python main.py data "data" --model "N2V" --mode train"

Note that the data folder must contain two folders named train and validation.

Options available for training are:

  • --data: Folder where training and testing data is located.
    • default: data
  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --model: Name of model for noise removal.
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --input_size: Model patches input size
    • default: 64
  • --masking_method: Blind-spot masking method
    • default: UPS
  • --window: Window for blind-spot masking method in UPS
    • default: 5
  • --n_feat: Number of feature maps of the first convolutional layer
    • default: 96
  • --noise_type: Noise type from Gaussian (G), Poisson (P) and Impulse (I)
    • default: G
  • --ratio: Ratio for number of blind-spot pixels in patch
    • default: 1/64
  • --from_pretrained: Train model from pre-trained weights
    • default: False
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training
    • default: None
  • --weights_init_method: Weights initialization method
    • default: kaiming
  • --loss: Loss function for training
    • default: L2
  • --batch_size: Batch size for training data
    • default: 64
  • --epochs: Number of epochs to train the model.
    • default: 300
  • --steps_per_epoch: Number of steps per epoch for training
    • default: 100
  • --sigma: Noise parameter for creating labels - depends on distribution
    • default: 25
  • --lr: Learning rate
    • default: 4e-4
  • --wd: Weight decay for RAdam optimiser
    • default: 1e-4
  • --use_cuda: Use of GPU or CPU
    • default: 32
  • --seed: Random seed
    • default: 1

Required libraries

The files present on this repository require the following libraries (also listed in requirements.txt):

​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023