demir.ai Dataset Operations

Overview

demir.ai Dataset Operations

With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine learning algorithms, you can access visual or numerical information about your dataset and have more detailed information about your attributes.

The application is written in Python programming language, Flask framework is used in the backend, Html is used in the frontent. Pandas framework is used to navigate over the dataset, all numerical operations on the dataset were written by me and no ready-made functions were used, while the plots were created from scratch by me using the Opencv framework.

Before running the application, you can install the necessary packages for the application with the following command.

pip3 install -r requirements.txt

You can launch the web application with the following command, and then you can use the application by going to http://localhost:5000/.

python3 main.py

With this web application, you can delete rows or columns with empty values (nan/null) on your dataset or fill these empty values in three different ways.

  • Null value (nan) operations you can do on your dataset with demir.ai Dataset Operations:

    • Column-based deletion of null data (nan/null)
    • Row-based deletion of null data (nan/null)
    • Filling in blank data by mean, median and mode

Again, thanks to this web application, you can reach visual or numerical results about your dataset and have detailed information about your dataset.

  • Information you can learn about your dataset with demir.ai Dataset Operations:

    • Mean of columns
    • Median of columns
    • Mode of columns
    • Frequency of columns
    • Interquartile range value (IQR) of columns
    • Outliers of columns
    • Five number summary of columns
    • Box Chart of columns
    • Variance and standard deviation of columns

Null value (nan/null) operations

  • Column-based deletion of null data (nan/null): The number of nulls is calculated for each column, then the percentage of nulls is calculated and if this percentage is greater than the percentage the user enters, this column is deleted.

  • Row-based deletion of null data (nan/null): The number of nulls is calculated for each line, and if this number of nulls is greater than the number entered by the user, this line is deleted.

  • Filling in blank data by mean, median and mode:

    • Mean: The sum of the non-blank values of the columns is taken and divided by the total number of non-blank values, the average obtained is written instead of the empty values.

    • Median: The median is calculated according to the non-blank values in the columns, and then this median value is written instead of the empty columns.

    • Mode: The mode is calculated according to the non-blank values in the columns, and then this mode value is written instead of the empty columns

Information you can learn about your dataset

  • Mean of columns: The mean is calculated for each column separately and the column mean information is presented to the user.

  • Median of columns: The median is calculated for each column separately and the column median information is presented to the user.

  • Mode of columns: The mode is calculated for each column separately and the column mode information is presented to the user.

  • Frequency of columns: Frequency is calculated for each column and the frequency information of the columns is presented to the user. In this section, frequency visualization is also done by creating a bar plot from scratch with Opencv.

  • Interquartile range value (IQR) of columns: Q1 and Q3 values are found for each column, then the IQR value of the columns is found with Q3-Q1 and presented to the user.

  • Outliers of columns: If the data in the column is less than (Q1-IQR * 1.5) and greater than (Q3+IQR * 1.5), it is called outlier and this information is presented to the user.

  • Five number summary of columns: Minimum, Q1, median, Q3 and Maximum values are calculated and presented to the user.

  • Box Chart of columns: After finding the minimum, Q1, median, Q3 and maximum values for each column, a box chart is created from scratch with Opencv and this chart is presented to the user.

  • Variance and standard deviation of columns: The variance and standard deviation for each column are calculated and presented to the user.

Application video

demirai.mp4
Owner
Ahmet Furkan DEMIR
Hi, my name is Ahmet Furkan DEMIR. I study computer engineering at Necmettin Erbakan University.
Ahmet Furkan DEMIR
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
A set of three functions, useful in geographical calculations of different sorts

GreatCircle A set of three functions, useful in geographical calculations of different sorts. Available for PHP, Python, Javascript and Ruby. Live dem

72 Sep 30, 2022
Using SQLite within Python to create database and analyze Starcraft 2 units data (Pandas also used)

SQLite python Starcraft 2 English This project shows the usage of SQLite with python. To create, modify and communicate with the SQLite database from

1 Dec 30, 2021
Python Data Validation for Humans™.

validators Python data validation for Humans. Python has all kinds of data validation tools, but every one of them seems to require defining a schema

Konsta Vesterinen 670 Jan 09, 2023
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

9 Sep 02, 2022
🌀❄️🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in python3.

Weather-Plotting 🌀 ❄️ 🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in pytho

Giannis Dravilas 21 Dec 10, 2022
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
paintable GitHub contribute table

githeart paintable github contribute table how to use: Functions key color select 1,2,3,4,5 clear c drawing mode mode on turn off e print paint matrix

Bahadır Araz 27 Nov 24, 2022
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
Example scripts for generating plots of Bohemian matrices

Bohemian Eigenvalue Plotting Examples This repository contains examples of generating plots of Bohemian eigenvalues. The examples in this repository a

Bohemian Matrices 5 Nov 12, 2022
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection

Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker

Joshua Ghali 3 Aug 06, 2021
Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Karl Jaehnig 7 Oct 22, 2022
Automate the case review on legal case documents and find the most critical cases using network analysis

Automation on Legal Court Cases Review This project is to automate the case review on legal case documents and find the most critical cases using netw

Yi Yin 7 Dec 28, 2022
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Sprint planner considering JIRA issues and google calendar meetings schedule.

Sprint planner Sprint planner is a Python script for planning your Jira tasks based on your calendar availability. Installation Use the package manage

Apptension 2 Dec 05, 2021
Datapane is the easiest way to create data science reports from Python.

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog Share interactive plots and data in 3 lines of Python. Datapane is a Python lib

Datapane 744 Jan 06, 2023
3D Vision functions with end-to-end support for deep learning developers, written in Ivy.

Ivy vision focuses predominantly on 3D vision, with functions for camera geometry, image projections, co-ordinate frame transformations, forward warping, inverse warping, optical flow, depth triangul

Ivy 61 Dec 29, 2022
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023