A pytorch-based real-time segmentation model for autonomous driving

Overview

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation

This project contains the Pytorch implementation for the proposed CFPNet: paper

Result
Result
Real-time semantic segmentation is playing a more important role in computer vision, due to the growing demand for mobile devices and autonomous driving. Therefore, it is very important to achieve a good trade-off among performance, model size and inference speed. In this paper, we propose a Channel-wise Feature Pyramid (CFP) module to balance those factors. Based on the CFP module, we built CFPNet for real-time semantic segmentation which applied a series of dilated convolution channels to extract effective features. Experiments on Cityscapes and CamVid datasets show that the proposed CFPNet achieves an effective combination of those factors. For the Cityscapes test dataset, CFPNet achievse 70.1% class-wise mIoU with only 0.55 million parameters and 2.5 MB memory. The inference speed can reach 30 FPS on a single RTX 2080Ti GPU (GPU usage 60%) with a 1024×2048-pixel image.

Installation

  • Enviroment: Python 3.6; Pytorch 1.0; CUDA 9.0; cuDNN V7
  • Install some packages:
pip install opencv-python pillow numpy matplotlib
  • Clone this repository
git clone https://github.com/AngeLouCN/CFPNet
  • One GPU with 11GB memory is needed

Dataset

You need to download the two dataset——CamVid and Cityscapes, and put the files in the datasetfolder with following structure.

|—— camvid
|    ├── train
|    ├── test
|    ├── val 
|    ├── trainannot
|    ├── testannot
|    ├── valannot
|    ├── camvid_trainval_list.txt
|    ├── camvid_train_list.txt
|    ├── camvid_test_list.txt
|    └── camvid_val_list.txt
├── cityscapes
|    ├── gtCoarse
|    ├── gtFine
|    ├── leftImg8bit
|    ├── cityscapes_trainval_list.txt
|    ├── cityscapes_train_list.txt
|    ├── cityscapes_test_list.txt
|    └── cityscapes_val_list.txt  

Training

  • You can run: python train.py -hto check the detail of optional arguments. In the train.py, you can set the dataset, train type, epochs and batch size, etc.
  • training on Cityscapes train set.
python train.py --dataset cityscapes
  • training on Camvid train and val set.
python train.py --dataset camvid --train_type trainval --max_epochs 1000 --lr 1e-3 --batch_size 16
  • During training course, every 50 epochs, we will record the mean IoU of train set, validation set and training loss to draw a plot, so you can check whether the training process is normal.
Val mIoU vs Epochs Train loss vs Epochs
Result
Result

Testing

  • After training, the checkpoint will be saved at checkpointfolder, you can use test.pyto predict the result.
python test.py --dataset ${camvid, cityscapes} --checkpoint ${CHECKPOINT_FILE}

Evalution

  • For those dataset that do not provide label on the test set (e.g. Cityscapes), you can use predict.py to save all the output images, then submit to official webpage for evaluation.
python test.py --dataset ${camvid, cityscapes} --checkpoint ${CHECKPOINT_FILE}

Inference Speed

  • You can run the eval_fps.py to test the model inference speed, input the image size such as 1024,2048.
python eval_fps.py 1024,2048

Results

  • Results for CFPNet-V1, CFPNet-V2 and CFPNet-v3:
Dataset Model mIoU
Cityscapes CFPNet-V1 60.4%
Cityscapes CFPNet-V2 66.5%
Cityscapes CFPNet-V3 70.1%
  • Sample results: (from top to bottom is Original, CFPNet-V1, CFPNet-V2 and CFPNet-v3)
Result
Category_acc vs size Class_acc vs size
Result
Result
Class_acc vs parameter Class_acc vs speed
Result
Result

Comparsion

  • Results of Cityscapes
Result
  • Results of CamVid
Result

Citation

If you think our work is helpful, please consider to cite:

@article{lou2021cfpnet,
  title={CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation},
  author={Lou, Ange and Loew, Murray},
  journal={arXiv preprint arXiv:2103.12212},
  year={2021}
}
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022