Refactored version of FastSpeech2

Overview

FastSpeech2

This repository is a refactored version from ming024's own. I focused on refactoring structure for fitting my cases and making parallel pre-processing codes. And I wrote installation guide with the latest version of MFA(Montreal Force Aligner).

Installation

  • Tested on python 3.8, Ubuntu 20.04

    • Notice ! For installing MFA, you should install the miniconda.
    • If you run MFA under 16.04 or ealier version of Ubuntu, you will face a compile error.
  • In your system

    • To install pyworld, run "sudo apt-get install python3.x-dev". (x is your python version).
    • To install sndfile, run "sudo apt-get install libsndfile-dev"
    • To use MFA, run "sudo apt-get install libopenblas-base"
  • Install requirements

# install pytorch_sound
pip install git+https://github.com/appleholic/pytorch_sound
pip install -e .
  • Download datasets
  1. VCTK
  2. LibriTTS
    • To be updated
  • Install MFA

    • Visit and follow a guide that described in MFA installation website.
    • Additional installation
      • mfa thirdparty download
      • mfa download acoustic english
  • Pre-trained checkpoint

Preprocess (VCTK case)

  1. Prepare MFA
python fastspeech2/scripts/prepare_align.py configs/vctk_prepare_align.json
  1. Run MFA for making alignments
# Define your the number of threads to run MFA at the last of a command. "-j [The number of threads]"
mfa align data/fastspeech2/vctk lexicons/librispeech-lexicon.txt english data/fastspeech2/vctk-pre -j 24
  1. Feature preprocessing
python fastspeech2/scripts/preprocess.py configs/vctk_preprocess.json

Train

  1. Multi-speaker fastspeech2
python fastspeech2/scripts/train.py configs/fastspeech2_vctk_tts.json
  • If you want to change the parameters of training FastSpeech2, check out the code and put the option to configuration file.
    • train code : fastspeech2/scripts/train.py
    • config : configs/fastspeech2_vctk_tts.json
  1. Fastspeech2 with reference encoder (To be updated)

Synthesize

Multi-spaker model

  • In a code
from fastspeech2.inference import Inferencer
from speech_interface.interfaces.hifi_gan import InterfaceHifiGAN

# arguments
# chk_path: str, lexicon_path: str, device: str = 'cuda'
inferencer = Inferencer(chk_path=chk_path, lexicon_path=lexicon_path, device=device)

# initialize hifigan
interface = InterfaceHifiGAN(model_name='hifi_gan_v1_universal', device='cuda')

# arguments
# text: str, speaker: int = 0, pitch_control: float = 1., energy_control: float = 1., duration_control: float = 1.
txt = 'Hello, I am a programmer.'
mel_spectrogram = inferencer.tts(txt, speaker=0)

# Reconstructs speech by using Hifi-GAN
pred_wav = interface.decode(mel_spectrogram.transpose(1, 2)).squeeze()

# If you test on a jupyter notebook
from IPython.display import Audio
Audio(pred_wav.cpu().numpy(), rate=22050)
  • In command line
python fastspeech2/scripts/synthesize.py [TEXT] [OUTPUT PATH] [CHECKPOINT PATH] [LEXICON PATH] [[DEVICE]] [[SPEAKER]]

Reference encoder (not updated)

Reference

Owner
ILJI CHOI
AI Research Engineer
ILJI CHOI
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022