Open-source Monocular Python HawkEye for Tennis

Overview

Tennis Tracking 🎾

Objectives

  • Track the ball
  • Detect court lines
  • Detect the players

To track the ball we used TrackNet - deep learning network for tracking high-speed objects. For players detection yolov3 was used.

Example using sample videos

Input Output
input_img1 output_img1
input_img2 output_img2
input_img3 output_img3

How to run

This project requires compatible GPU to install tensorflow, you can run it on your local machine in case you have one or use Google Colaboratory with Runtime Type changed to GPU.

  1. Clone this repository
  2. git clone https://github.com/ArtLabss/tennis-tracking
    
  3. Download yolov3 weights (237 MB) from here and add it to your Yolov3 folder.
  4. Install the requirements using pip
  5. pip install -r requirements.txt
  6. Run the following command in the command line
  7. python predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
  8. If you are using Google Colab upload all the files to Google Drive
  9. Create a Google Colaboratory Notebook in the same directory as predict_video.py and connect it to Google drive
  10. from google.colab import drive
    drive.mount('/content/drive')
  11. Change the working directory to the one where the Colab Notebook and predict_video.py are. In my case,
  12. import os 
    os.chdir('MyDrive/Colab Notebooks/tennis-tracking')
  13. Install the requirements
  14. !pip install -r requirements.txt
  15. Inside the notebook run predict_video.py
  16.  !python3 predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
    

    After the compilation is completed, a new video will be created in VideoOutput folder if --minimap was set 0, if --minimap=1 three videos will be created: video of the game, video of minimap and a combined video of both

    P.S. If you stumble upon an error or have any questions feel free to open a new Issue

What's new?

  • Court line detection improved
  • Player detection improved
  • The algorithm now works practically with any court colors
  • Faster algorithm
  • Dynamic Mini-Map with players and ball added, to activate use argument --minimap
--minimap=0 --minimap=1
input_img1 output_img1

Further Developments

  • Improve line detection of the court and remove overlapping lines
  • Algorithm fails to detect players when the court colors aren't similar to the sample video
  • Don't detect the ballboys/ballgirls
  • Don't contour the banners
  • Detect players on videos with different angles
  • Find the coordinates of the ball touching the court and display them
  • Code Optimization
  • Dynamic court mini-map with players and the ball

Current Drawbacks

  • Slow algorithms (to process 15 seconds video (6.1 Mb) it takes 28 minutes 16 minutes)
  • Algorithm works only on official match videos

References

- Yu-Chuan Huang, "TrackNet: Tennis Ball Tracking from Broadcast Video by Deep Learning Networks," Master Thesis, advised by Tsì-Uí İk and Guan-Hua Huang, National Chiao Tung University, Taiwan, April 2018. - Yu-Chuan Huang, I-No Liao, Ching-Hsuan Chen, Tsì-Uí İk, and Wen-Chih Peng, "TrackNet: A Deep Learning Network for Tracking High-speed and Tiny Objects in Sports Applications," in the IEEE International Workshop of Content-Aware Video Analysis (CAVA 2019) in conjunction with the 16th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS 2019), 18-21 September 2019, Taipei, Taiwan. - Joseph Redmon, Ali Farhadi, "YOLOv3: An Incremental Improvement", University of Washington, https://arxiv.org/pdf/1804.02767.pdf
Owner
ArtLabs
ArtLabs
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022