Hitters Linear Regression - Hitters Linear Regression With Python

Overview

Hitters_Linear_Regression

image

Kullanacağımız veri seti Carnegie Mellon Üniversitesi'nde bulunan StatLib kütüphanesinden alınmıştır. Veri seti 1988 ASA Grafik Bölümü Poster Oturumu'nda kullanılan verilerin bir parçasıdır. Maaş verileri orijinal olarak Sports Illustrated, 20 Nisan 1987'den alınmıştır. 1986 ve kariyer istatistikleri, Collier Books, Macmillan Publishing Company, New York tarafından yayınlanan 1987 Beyzbol Ansiklopedisi Güncellemesinden elde edilmiştir. Salary yani maaş değişkeninini bu projede linear regression ile tahmin edeceğiz.

Veri setini daha yakından tanımak adına değişkenleri tanıyalım:

AtBat: 1986–1987 sezonunda bir beyzbol sopası ile topa yapılan vuruş sayısı 

Hits: 1986–1987 sezonundaki isabet sayısı 

HmRun: 1986–1987 sezonundaki en değerli vuruş sayısı 

Runs: 1986–1987 sezonunda takımına kazandırdığı sayı 

RBI: Bir vurucunun vuruş yaptığında koşu yaptırdığı oyuncu sayısı 

Walks: Karşı oyuncuya yaptırılan hata sayısı 

Years: Oyuncunun major liginde oynama süresi (sene) 

CAtBat: Oyuncunun kariyeri boyunca topa vurma sayısı 

CHits: Oyuncunun kariyeri boyunca yaptığı isabetli vuruş sayısı 

CHmRun: Oyucunun kariyeri boyunca yaptığı en değerli vuruş sayısı 

CRuns: Oyuncunun kariyeri boyunca takımına kazandırdığı sayı 

CRBI: Oyuncunun kariyeri boyunca koşu yaptırdırdığı oyuncu sayısı 

CWalks: Oyuncun kariyeri boyunca karşı oyuncuya yaptırdığı hata sayısı 

League: Oyuncunun sezon sonuna kadar oynadığı ligi gösteren A ve N seviyelerine sahip bir faktör 

Division: 1986 sonunda oyuncunun oynadığı pozisyonu gösteren E ve W seviyelerine sahip bir faktör 

PutOuts: Oyun icinde takım arkadaşınla yardımlaşma 

Assits: 1986–1987 sezonunda oyuncunun yaptığı asist sayısı 

Errors: 1986–1987 sezonundaki oyuncunun hata sayısı 

Salary: Oyuncunun 1986–1987 sezonunda aldığı maaş(bin uzerinden) 

NewLeague: 1987 sezonunun başında oyuncunun ligini gösteren A ve N seviyelerine sahip bir faktör

Owner
AyseBuyukcelik
AyseBuyukcelik
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023