Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Overview

PyTorch Git

Super-Fast-Adversarial-Training

Generic badge Generic badge Generic badge License: MIT

This is a PyTorch Implementation code for developing super fast adversarial training. This code is combined with below state-of-the-art technologies for accelerating adversarial attacks and defenses with Deep Neural Networks on Volta GPU architecture.

  • Distributed Data Parallel [link]
  • Channel Last Memory Format [link]
  • Mixed Precision Training [link]
  • Mixed Precision + Adversarial Attack (based on torchattacks [link])
  • Faster Adversarial Training for Large Dataset [link]
  • Fast Forward Computer Vision (FFCV) [link]

Citation

If you find this work helpful, please cite it as:

@software{SuperFastAT_ByungKwanLee_2022,
  author = {Byung-Kwan Lee},
  title = {Super-Fast-Adversarial-Training},
  url = {https://github.com/ByungKwanLee/Super-Fast-Adversarial-Training},
  version = {alpha},
  year = {2022}
}

Library for Fast Adversarial Attacks

This library is developed based on the well-known package of torchattacks [link] due to its simple scalability.

Under Developement (Current Available Attacks Below)

  • Fast Gradient Sign Method (FGSM)
  • Projected Gradient Descent (PGD)

Environment Setting

Please check below settings to successfully run this code. If not, follow step by step during filling the checklist in.

  • To utilize FFCV [link], you should install it on conda virtual environment. I use python version 3.8, pytorch 1.7.1, torchvision 0.8.2, and cuda 10.1. For more different version, you can refer to PyTorch official site [link].

conda create -y -n ffcv python=3.8 cupy pkg-config compilers libjpeg-turbo opencv pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 numba -c pytorch -c conda-forge

  • Activate the created environment by conda

conda activate ffcv

  • And, it would be better to install cudnn to more accelerate GPU. (Optional)

conda install cudnn -c conda-forge

  • To install FFCV, you should download it in pip and install torchattacks [link] to run adversarial attack.

pip install ffcv torchattacks==3.1.0

  • To guarantee the execution of this code, please additionally install library in requirements.txt (matplotlib, tqdm)

pip install -r requirements.txt


Available Datasets


Available Baseline Models


How to run

After making completion of environment settings, then you can follow how to run below.


  • First, run fast_dataset_converter.py to generate dataset with .betson extension, instead of using original dataset [FFCV].
# Future import build
from __future__ import print_function

# Import built-in module
import os
import argparse

# fetch args
parser = argparse.ArgumentParser()

# parameter
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--gpu', default='0', type=str)
args = parser.parse_args()

# GPU configurations
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu

# init fast dataloader
from utils.fast_data_utils import save_data_for_beton
save_data_for_beton(dataset=args.dataset)

  • Second, run fast_pretrain_standard.py(Standard Training) or fast_pretrain_adv.py (Adversarial Training)
# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=50, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=512, type=float)
parser.add_argument('--test_batch_size', default=128, type=float)
parser.add_argument('--epoch', default=100, type=int)

or

# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=18, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=1024, type=float)
parser.add_argument('--test_batch_size', default=512, type=float)
parser.add_argument('--epoch', default=60, type=int)

# attack parameter
parser.add_argument('--attack', default='pgd', type=str)
parser.add_argument('--eps', default=0.03, type=float)
parser.add_argument('--steps', default=10, type=int)

To-do

I have plans to make a variety of functions to be a standard framework for adversarial training.

  • Many Compatible Adversarial Attacks and Defenses
  • Super Fast Evaluation and Validating its Compatibility
  • Re-Arrangement of class and function for code readability
  • Providing Checkpoints per dataset and model to reduce your own time
Owner
LBK
Ph.D Candidate, KAIST EE
LBK
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022