Decorator for PyMC3

Related tags

Deep Learningsampled
Overview

Build Status Coverage Status

sampled

Decorator for reusable models in PyMC3

Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative model from using the model.

Here is an example of creating a model:

import numpy as np
import pymc3 as pm
from sampled import sampled
import theano.tensor as tt

@sampled
def linear_model(X, y):
    shape = X.shape
    X = pm.Normal('X', mu=tt.mean(X, axis=0), sd=np.std(X, axis=0), shape=shape)
    coefs = pm.Normal('coefs', mu=tt.zeros(shape[1]), sd=tt.ones(shape[1]), shape=shape[1])
    pm.Normal('y', mu=tt.dot(X, coefs), sd=tt.ones(shape[0]), shape=shape[0])

Now here is how to use the model:

X = np.random.normal(size=(1000, 10))
w = np.random.normal(size=10)
y = X.dot(w) + np.random.normal(scale=0.1, size=1000)

with linear_model(X=X, y=y):
    sampled_coefs = pm.sample(draws=1000, tune=500)

np.allclose(sampled_coefs.get_values('coefs').mean(axis=0), w, atol=0.1) # True

You can also use this to build graphical networks -- here is a continuous version of the STUDENT example from Koller and Friedman's "Probabilistic Graphical Models", chapter 3:

import pymc3 as pm
from sampled import sampled
import theano.tensor as tt

@sampled
def student():
    difficulty = pm.Beta('difficulty', alpha=5, beta=5)
    intelligence = pm.Beta('intelligence', alpha=5, beta=5)
    SAT = pm.Beta('SAT', alpha=20 * intelligence, beta=20 * (1 - intelligence))
    grade_avg = 0.5 + 0.5 * tt.sqrt((1 - difficulty) * intelligence)
    grade = pm.Beta('grade', alpha=20 * grade_avg, beta=20 * (1 - grade_avg))
    recommendation = pm.Binomial('recommendation', n=1, p=0.7 * grade)

Observations may be passed into any node, and we can observe how that changes posterior expectations:

# no prior knowledge
with student():
    prior = pm.sample(draws=1000, tune=500)

prior.get_values('recommendation').mean()  # 0.502

# 99th percentile SAT score --> higher chance of a recommendation
with student(SAT=0.99):
    good_sats = pm.sample(draws=1000, tune=500)

good_sats.get_values('recommendation').mean()  # 0.543

# A good grade in a hard class --> very high chance of recommendation
with student(difficulty=0.99, grade=0.99):
    hard_class_good_grade = pm.sample(draws=1000, tune=500)

hard_class_good_grade.get_values('recommendation').mean()  # 0.705

References

  • Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
Owner
Colin
Colin
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023