High-Resolution Image Synthesis with Latent Diffusion Models

Overview

Latent Diffusion Models

Requirements

A suitable conda environment named ldm can be created and activated with:

conda env create -f environment.yaml
conda activate ldm

Model Zoo

Pretrained Autoencoding Models

rec2

Model FID vs val PSNR PSIM Link Comments
f=4, VQ (Z=8192, d=3) 0.58 27.43 +/- 4.26 0.53 +/- 0.21 https://ommer-lab.com/files/latent-diffusion/vq-f4.zip
f=4, VQ (Z=8192, d=3) 1.06 25.21 +/- 4.17 0.72 +/- 0.26 https://heibox.uni-heidelberg.de/f/9c6681f64bb94338a069/?dl=1 no attention
f=8, VQ (Z=16384, d=4) 1.14 23.07 +/- 3.99 1.17 +/- 0.36 https://ommer-lab.com/files/latent-diffusion/vq-f8.zip
f=8, VQ (Z=256, d=4) 1.49 22.35 +/- 3.81 1.26 +/- 0.37 https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip
f=16, VQ (Z=16384, d=8) 5.15 20.83 +/- 3.61 1.73 +/- 0.43 https://heibox.uni-heidelberg.de/f/0e42b04e2e904890a9b6/?dl=1
f=4, KL 0.27 27.53 +/- 4.54 0.55 +/- 0.24 https://ommer-lab.com/files/latent-diffusion/kl-f4.zip
f=8, KL 0.90 24.19 +/- 4.19 1.02 +/- 0.35 https://ommer-lab.com/files/latent-diffusion/kl-f8.zip
f=16, KL (d=16) 0.87 24.08 +/- 4.22 1.07 +/- 0.36 https://ommer-lab.com/files/latent-diffusion/kl-f16.zip
f=32, KL (d=64) 2.04 22.27 +/- 3.93 1.41 +/- 0.40 https://ommer-lab.com/files/latent-diffusion/kl-f32.zip

Get the models

Running the following script downloads und extracts all available pretrained autoencoding models.

bash scripts/download_first_stages.sh

The first stage models can then be found in models/first_stage_models/

Pretrained LDMs

Datset Task Model FID IS Prec Recall Link Comments
CelebA-HQ Unconditional Image Synthesis LDM-VQ-4 (200 DDIM steps, eta=0) 5.11 (5.11) 3.29 0.72 0.49 https://ommer-lab.com/files/latent-diffusion/celeba.zip
FFHQ Unconditional Image Synthesis LDM-VQ-4 (200 DDIM steps, eta=1) 4.98 (4.98) 4.50 (4.50) 0.73 0.50 https://ommer-lab.com/files/latent-diffusion/ffhq.zip
LSUN-Churches Unconditional Image Synthesis LDM-KL-8 (400 DDIM steps, eta=0) 4.02 (4.02) 2.72 0.64 0.52 https://ommer-lab.com/files/latent-diffusion/lsun_churches.zip
LSUN-Bedrooms Unconditional Image Synthesis LDM-VQ-4 (200 DDIM steps, eta=1) 2.95 (3.0) 2.22 (2.23) 0.66 0.48 https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip
ImageNet Class-conditional Image Synthesis LDM-VQ-8 (200 DDIM steps, eta=1) 7.77(7.76)* /15.82** 201.56(209.52)* /78.82** 0.84* / 0.65** 0.35* / 0.63** https://ommer-lab.com/files/latent-diffusion/cin.zip *: w/ guiding, classifier_scale 10 **: w/o guiding, scores in bracket calculated with script provided by ADM
Conceptual Captions Text-conditional Image Synthesis LDM-VQ-f4 (100 DDIM steps, eta=0) 16.79 13.89 N/A N/A https://ommer-lab.com/files/latent-diffusion/text2img.zip finetuned from LAION
OpenImages Super-resolution N/A N/A N/A N/A N/A https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip BSR image degradation
OpenImages Layout-to-Image Synthesis LDM-VQ-4 (200 DDIM steps, eta=0) 32.02 15.92 N/A N/A https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip
Landscapes (finetuned 512) Semantic Image Synthesis LDM-VQ-4 (100 DDIM steps, eta=1) N/A N/A N/A N/A https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip

Get the models

The LDMs listed above can jointly be downloaded and extracted via

bash scripts/download_models.sh

The models can then be found in models/ldm/ .

Sampling with unconditional models

We provide a first script for sampling from our unconditional models. Start it via

CUDA_VISIBLE_DEVICES=<GPU_ID> python scripts/sample_diffusion.py -r models/ldm/<model_spec>/model.ckpt -l <logdir> -n <\#samples> --batch_size <batch_size> -c <\#ddim steps> -e <\#eta> 

Coming Soon...

inpainting

Comments

Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023