Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Overview

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper | Twitter

unit test syntax checking PEP8 checking docstring coverage Coverage Status

Avalanche RL is a fork of ContinualAI's Pytorch-based framework Avalanche with the goal of extending its capabilities to Continual Reinforcement Learning (CRL), bootstrapping from the work done on Super/Unsupervised Continual Learning.

It should support all environments sharing the gym.Env interface, handle stream of experiences, provide strategies for RL algorithms and enable fast prototyping through an extremely flexible and customizable API.

The core structure and design principles of Avalanche are to remain untouched to easen the learning curve for all continual learning practitioners, so we still work with the same modules you can find in avl:

  • Benchmarks for managing data and stream of data.
  • Training for model training making use of extensible strategies.
  • Evaluation to evaluate the agent on consistent metrics.
  • Extras for general utils and building blocks.
  • Models contains commonly used model architectures.
  • Logging for logging metrics during training/evaluation.

Head over to Avalanche Website to learn more if these concepts sound unfamiliar to you!

Features


Features added so far in this fork can be summarized and grouped by module.

Benchmarks

RLScenario introduces a Benchmark for RL which augments each experience with an 'Environment' (defined through OpenAI gym.Env interface) effectively implementing a "stream of environments" with which the agent can interact to generate data and learn from that interaction during each experience. This concept models the way experiences in the supervised CL context are translated to CRL, moving away from the concept of Dataset toward a dynamic interaction through which data is generated.

RL Benchmark Generators allow to build these streams of experiences seamlessly, supporting:

  • Any sequence of gym.Env environments through gym_benchmark_generator, which returns a RLScenario from a list of environments ids (e.g. ["CartPole-v1", "MountainCar-v0", ..]) with access to a train and test stream just like in Avalanche. It also supports sampling a random number of environments if you wanna get wild with your experiments.
  • Atari 2600 games through atari_benchmark_generator, taking care of common Wrappers (e.g. frame stacking) for these environments to get you started even more quickly.
  • Habitat, more on this later.

Training

RLBaseStrategy is the super-class of all RL algorithms, augmenting BaseStrategy with RL specific callbacks while still making use of all major features such as plugins, logging and callbacks. Inspired by the amazing stable-baselines-3, it supports both on and off-policy algorithms under a common API defined as a 'rollouts phase' (data gathering) followed by an 'update phase', whose specifics are implemented by subclasses (RL algorithms).

Algorithms are added to the framework by subclassing RLBaseStrategy and implementing specific callbacks. You can check out this implementation of A2C in under 50 lines of actual code including the update step and the action sampling mechanism. Currently only A2C and DQN+DoubleDQN algorithms have been implemented, including various other "utils" such as Replay Buffer.

Training with multiple agent is supported through VectorizedEnv, leveraging Ray for parallel and potentially distributed execution of multiple environment interactions.

Evaluation

New metrics have been added to keep track of rewards, episodes length and any kind of scalar value (such as Epsilon Greedy 'eps') during experiments. Metrics are kept track of using a moving averaged window, useful for smoothing out fluctuations and recording standard deviation and max values reached.

Extras

Several common environment Wrappers are also kept here as we encourage the use of this pattern to suit environments output to your needs. We also provide common gym control environments which have been "parametrized" so you can tweak values such as force and gravity to help out in testing new ideas in a fast and reliable way on well known testbeds. These environments are available by pre-pending a C to the env id as in CCartPole-v1 as they're registered on first import.

Models

In this module you can find an implementation of both MLPs and CNNs for deep-q learning and actor-critic approaches, adapted from popular papers such as "Human-level Control Through Deep Reinforcement Learning" and "Overcoming catastrophic forgetting in neural networks" to learn directly from pixels or states.

Logging

A Tqdm-based interactive logger has been added to ease readability as well as sensible default loggers for RL algorithms.

Quick Example


import torch
from torch.optim import Adam
from avalanche.benchmarks.generators.rl_benchmark_generators import gym_benchmark_generator

from avalanche.models.actor_critic import ActorCriticMLP
from avalanche.training.strategies.reinforcement_learning import A2CStrategy

# Config
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Model
model = ActorCriticMLP(num_inputs=4, num_actions=2, actor_hidden_sizes=1024, critic_hidden_sizes=1024)

# CRL Benchmark Creation
scenario = gym_benchmark_generator(['CartPole-v1'], n_experiences=1, n_parallel_envs=1, 
    eval_envs=['CartPole-v1'])

# Prepare for training & testing
optimizer = Adam(model.parameters(), lr=1e-4)

# Reinforcement Learning strategy
strategy = A2CStrategy(model, optimizer, per_experience_steps=10000, max_steps_per_rollout=5, 
    device=device, eval_every=1000, eval_episodes=10)

# train and test loop
results = []
for experience in scenario.train_stream:
    strategy.train(experience)
    results.append(strategy.eval(scenario.test_stream))

Compare it with vanilla Avalanche snippet!

Check out more examples here (advanced ones coming soon) or in unit tests. We also got a small-scale reproduction of the original EWC paper (Deepmind) experiments.

Installation


As this fork is still under development, the advised way to install it is to simply clone this repo git clone https://github.com/NickLucche/avalanche.git and then just follow avalanche guide to install as developer. Spoiler, just run conda env update --file environment-dev.yml to update your current environment with avalanche-rl dependencies. Currently, the only added dependency is ray.

Disclaimer

This fork is under strict development so expect changes on the main branch on a fairly regular basis. As Avalanche itself it's still in its early Alpha versions, it's only fair to say that Avalanche RL is in super-duper pre-Alpha.

We believe there's lots of room for improvements and tweaking but at the same time there's much that can be offered to the growing community of continual learning practitioners approaching reinforcement learning by allowing to perform experiments under a common framework with a well-defined structure.

Owner
ContinualAI
A non-profit research organization and open community on Continual Learning for AI.
ContinualAI
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022