Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Related tags

Deep LearningStarQE
Overview

Query Embedding on Hyper-Relational Knowledge Graphs

This repository contains the code used for the experiments in the paper

Query Embedding on Hyper-Relational Knowledge Graphs.
Dimitrios Alivanistos and Max Berrendorf and Michael Cochez and Mikhail Galkin

If you encounter any problems, or have suggestions on how to improve this code, open an issue.

Abstract: Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.

Requirements

We developed our repository using Python 3.8.5. Other version may also work.

First, please ensure that you have properly installed

in your environment. Running experiments is possible on both CPU and GPU. On a GPU, the training should go noticeably faster. If you are using GPU, please make sure that the installed versions match your CUDA version.

We recommend the use of virtual environments, be it virtualenv or conda.

Now, clone the repository and install other dependencies using pip. After moving to the root of the repo (and with your virtual env activated) type:

pip install .

If you want to change code, we suggest to use the editable mode of the pip installation:

pip install -e .

To log results, we suggest using wandb. Instructions on installation and setting up can be found here: https://docs.wandb.ai/quickstart

Running test (optional)

You can run the tests by installing the test dependencies

pip install -e '.[test]'

and then executing them

pytest

Both from the root of the project.

It is normal that you see some skipped tests.

Running experiments

The easiest way to start experiments is via the command line interface. The command line also provides more information on the options available for each command. You can show the help it by typing

hqe --help

into a terminal within your active python environment. Some IDEs, e.g. PyCharm, require you to start from a file if you want to enable the debugger. To this end, we also provide a thin wrapper in executables, which you can start by

python executables/main.py

Downloading the data

To run experiments, we offer the preprocessed queries for download. It is also possible to run the preprocessing steps yourself, cf. the data preprocessing README, using the following command

hqe preprocess skip-and-download-binary

Training a model

There are many options are available for model training. For an overview of options, run

hqe train --help

Some examples:


Train with default settings, using 10000 reified 1hop queries with a qualifier and use 5000 reified triples from the validation set. Details on how to specify the amount of samples can be found in [src/mphrqe/data/loader.Sample](the Sample class). Note that the data loading is taking care of only using data from the correct data split.

hqe train \
    -tr /1hop/1qual:atmost10000:reify \
    -va /1hop/1qual:5000:reify

Train with the same data, but with custom parameters for the model. The example below uses target pooling to get the embedding of the query graph, uses a dropout of 0.5 in the layers, uses cosine similarity instead of the dot product to compute similarity when ranking answers to the query, and enables wandb for logging the metrics. Finally, the trained model is stored as a file training-example-model.pt which then be used in the evaluation.

hqe train \
    -tr /1hop/1qual:atmost10000:reify \
    -va /1hop/1qual:5000:reify \
    --graph-pooling TargetPooling \
    --dropout 0.5 \
    --similarity CosineSimilarity \
    --use-wandb --wandb-name "training-example" \
    --save \
    --model-path "training-example-model.pt"

By default, the model path is relative to the current working directory. Providing an absolute path to a different directory can change that.

Performing hyper parameter optimization

To find optimal parameters for a dataset, one can run a hyperparameter optimization. Under the hood this is using the optuna framework.

All options for the hyperparameter optimization can be seen with

hqe optimize --help

Some examples:


Run hyper-parameter optimization. This will result in a set of runs with different hyper-parameters from which the user can pick the best.

hqe optimize \
    -tr "/1hop/1qual-per-triple:*" \
    -tr "/2i/1qual-per-triple:atmost40000" \
    -tr "/2hop/1qual-per-triple:40000" \
    -tr "/3hop/1qual-per-triple:40000" \
    -tr "/3i/1qual-per-triple:40000" \
    -va "/1hop/1qual-per-triple:atmost3500" \
    -va "/2i/1qual-per-triple:atmost3500" \
    -va "/2hop/1qual-per-triple:atmost3500" \
    -va "/3hop/1qual-per-triple:atmost3500" \
    -va "/3i/1qual-per-triple:atmost3500" \
    --use-wandb \
    --wandb-name "hpo-query2box-style"

Evaluating model performance

To evaluate a model's performance on the test set, we provide an example below:

hqe evaluate \
    --test-data "/1hop/1qual:5000:reify" \
    --use-wandb \
    --wandb-name "test-example" \
    --model-path "training-example-model.pt"

Citation

If you find this work useful, please consider citing

@misc{alivanistos2021query,
      title={Query Embedding on Hyper-relational Knowledge Graphs}, 
      author={Dimitrios Alivanistos and Max Berrendorf and Michael Cochez and Mikhail Galkin},
      year={2021},
      eprint={2106.08166},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Comments
  • bug in SPARQL for 1hop-2i/0qual

    bug in SPARQL for 1hop-2i/0qual

    It looks like the SPARQL is not executable. should line 37 in test/validation and line 22 in train: FILTER ((?s1 != ?o2_s0) || (?s1 = ?o2_s0 && str(?p0)< str(?1) )) be FILTER ((?s1 != ?o2_s0) || (?s1 = ?o2_s0 && str(?p0)< str(?p1) )) ?

    opened by Kelaproth 2
Releases(v1.0.0-iclr)
Owner
DimitrisAlivas
Researcher. Data scientist. Passionate about Tech & AI
DimitrisAlivas
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022