This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Overview

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition

This is the research repository for Vid2Doppler (CHI 2021) containing the code for:

  • Generating synthetic Doppler data from videos
  • Evaluating the activity recognition classifier trained on synthetically generated Doppler data only, on the real world Doppler dataset presented in the paper

More details for the project can be found here.

Environment Setup

We first recommend setting up conda or virtualenv to run an independent setup.

After cloning the git repository, in the Vid2Doppler folder:

  1. Create a conda environment:
conda create -n vid2dop python=3.7
conda activate vid2dop
pip install -r requirements.txt
  1. Install the psbody library for the mesh visualization. In particular:
git clone https://github.com/MPI-IS/mesh.git

In the mesh folder, run:

BOOST_INCLUDE_DIRS=/path/to/boost/include make all

Now go to the Python folder in Vid2Doppler and replace the meshviewer.py installed by pybody with the custom one:

cp meshviewer.py $CONDA_PREFIX/lib/python3.7/site-packages/psbody/mesh/meshviewer.py

In case of using some other virtual environment manager, replace the meshviewer.py file installed by psbody with the one provided.

  1. Run the following command in the Python folder to get the pretrained VIBE pose model in the:
source ../Environment/prepare_data.sh

Dataset and Models

Use the links below to download the:

You can download and unzip the above in the Vid2Doppler folder.

Usage

Run the following in the Python folder.

Synthetic Doppler Data Generation from Videos

doppler_from_vid.py generates synthetic Doppler data from videos. Run it on the sample_videos provided.

python doppler_from_vid.py --input_video YOUR_INPUT_VIDEO_FILE --model_path PATH_TO_DL_MODELS_FOLDER  

Other options:
	--visualize_mesh : output visualized radial velocity mesh (saved automatically in the output folder)
	--doppler_gt : Use if the ground truth real world Doppler data is available for comparison

The script outputs the synthetic data signal (saved with the suffix _output_signal) in the same folder as the input_video. Reference plot showcased below.

Human Activity Classification on Real World Doppler

doppler_eval.py has the code for evaluating the activity recogntion classifier trained on synthetically generated Doppler data and tested on the real world Doppler dataset.

python doppler_eval.py --data_path PATH_TO_DATASET_FOLDER --model_path PATH_TO_DL_MODELS_FOLDER  

Reference

Karan Ahuja, Yue Jiang, Mayank Goel, and Chris Harrison. 2021. Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 292, 1–10. DOI:https://doi.org/10.1145/3411764.3445138

Download paper here.

BibTex Reference:

@inproceedings{10.1145/3411764.3445138,
author = {Ahuja, Karan and Jiang, Yue and Goel, Mayank and Harrison, Chris},
title = {Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition},
year = {2021},
isbn = {9781450380966},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3411764.3445138},
doi = {10.1145/3411764.3445138},
articleno = {292},
numpages = {10},
keywords = {HAR, Datasets, Cross domain translation, Privacy-preserving sensing, Doppler sensing, Human activity recognition},
location = {Yokohama, Japan},
series = {CHI '21}
}

Vid2Doppler makes use of VIBE and Psbody. Please cite them and be respectful of their licenses as well.

Owner
Future Interfaces Group (CMU)
The Future Interfaces Group is an interdisciplinary research lab within the Human-Computer Interaction Institute at Carnegie Mellon University.
Future Interfaces Group (CMU)
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022