๐Ÿงฎ Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Overview

LDA4Rec

Project generated with PyScaffold

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model After All" by Florian Wilhelm. The preprint can be found here along with the following statement:

"ยฉ Florian Wilhelm 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in RecSys '21: Fifteenth ACM Conference on Recommender Systems Proceedings, https://doi.org/10.1145/3460231.3474266."

Installation

In order to set up the necessary environment:

  1. review and uncomment what you need in environment.yml and create an environment lda4rec with the help of conda:
    conda env create -f environment.yml
    
  2. activate the new environment with:
    conda activate lda4rec
    
  3. (optionally) get a free neptune.ai account for experiment tracking and save the api token under ~/.neptune_api_token (default).

Running Experiments

First check out and adapt the default experiment config configs/default.yaml and run it with:

lda4rec -c configs/default.yaml run

A config like configs/default.yaml can also be used as a template to create an experiment set with:

lda4rec -c configs/default.yaml create -ds movielens-100k

using the Movielens-100k dataset. Check out cli.py for more details.

Cloud Setup

Commands for setting up an Ubuntu 20.10 VM with at least 20 GiB of HD on e.g. a GCP c2-standard-30 instance:

tmux
sudo apt-get install -y build-essential
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env
cargo install pueue
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O
sh Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc
git clone https://github.com/FlorianWilhelm/lda4rec.git
cd lda4rec
conda env create -f environment.yml
conda activate lda4rec
vim ~/.neptune_api_token # and copy it over

Then create and run all experiments for full control over parallelism with pueue:

pueued -d # only once to start the daemon
pueue parallel 10
export OMP_NUM_THREADS=4  # to limit then number of threads per model
lda4rec -c configs/default.yaml create # to create the config files
find ./configs -maxdepth 1 -name "exp_*.yaml" -exec pueue add "lda4rec -c {} run" \; -exec sleep 30 \;

Remark: -exec sleep 30 avoids race condition when reading datasets if parallelism is too high.

Dependency Management & Reproducibility

  1. Always keep your abstract (unpinned) dependencies updated in environment.yml and eventually in setup.cfg if you want to ship and install your package via pip later on.
  2. Create concrete dependencies as environment.lock.yml for the exact reproduction of your environment with:
    conda env export -n lda4rec -f environment.lock.yml
    For multi-OS development, consider using --no-builds during the export.
  3. Update your current environment with respect to a new environment.lock.yml using:
    conda env update -f environment.lock.yml --prune

Project Organization

โ”œโ”€โ”€ AUTHORS.md              <- List of developers and maintainers.
โ”œโ”€โ”€ CHANGELOG.md            <- Changelog to keep track of new features and fixes.
โ”œโ”€โ”€ LICENSE.txt             <- License as chosen on the command-line.
โ”œโ”€โ”€ README.md               <- The top-level README for developers.
โ”œโ”€โ”€ configs                 <- Directory for configurations of model & application.
โ”œโ”€โ”€ data                    <- Downloaded datasets will be stored here.
โ”œโ”€โ”€ docs                    <- Directory for Sphinx documentation in rst or md.
โ”œโ”€โ”€ environment.yml         <- The conda environment file for reproducibility.
โ”œโ”€โ”€ notebooks               <- Jupyter notebooks. Naming convention is a number (for
โ”‚                              ordering), the creator's initials and a description,
โ”‚                              e.g. `1.0-fw-initial-data-exploration`.
โ”œโ”€โ”€ logs                    <- Generated logs are collected here.
โ”œโ”€โ”€ results                 <- Results as exported from neptune.ai.
โ”œโ”€โ”€ setup.cfg               <- Declarative configuration of your project.
โ”œโ”€โ”€ setup.py                <- Use `python setup.py develop` to install for development or
โ”‚                              or create a distribution with `python setup.py bdist_wheel`.
โ”œโ”€โ”€ src
โ”‚   โ””โ”€โ”€ lda4rec             <- Actual Python package where the main functionality goes.
โ”œโ”€โ”€ tests                   <- Unit tests which can be run with `py.test`.
โ”œโ”€โ”€ .coveragerc             <- Configuration for coverage reports of unit tests.
โ”œโ”€โ”€ .isort.cfg              <- Configuration for git hook that sorts imports.
โ””โ”€โ”€ .pre-commit-config.yaml <- Configuration of pre-commit git hooks.

How to Cite

Please cite LDA4Rec if it helps your research. You can use the following BibTeX entry:

@inproceedings{wilhelm2021lda4rec,
author = {Wilhelm, Florian},
title = {Matrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All},
year = {2021},
month = sep,
isbn = {978-1-4503-8458-2/21/09},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3460231.3474266},
doi = {10.1145/3460231.3474266},
booktitle = {Fifteenth ACM Conference on Recommender Systems},
numpages = {8},
location = {Amsterdam, Netherlands},
series = {RecSys '21}
}

License

This sourcecode is AGPL-3-only licensed. If you require a more permissive licence, e.g. for commercial reasons, contact me to obtain a licence for your business.

Acknowledgement

Special thanks goes to Du Phan and Fritz Obermeyer from the (Num)Pyro project for their kind help and helpful comments on my code.

Note

This project has been set up using PyScaffold 4.0 and the dsproject extension 0.6. Some source code was taken from Spotlight (MIT-licensed) by Maciej Kula as well as lrann (MIT-licensed) by Florian Wilhelm and Marcel Kurovski.

Owner
Florian Wilhelm
Data Scientist with a mathematical background.
Florian Wilhelm
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
PoseViz โ€“ Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz โ€“ 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

Istvรกn Sรกrรกndi 79 Dec 30, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI ๐ŸŽ‰ YOLOv5็ฎ—ๆณ•(ver.6ๅŠver.5)็š„Qt-GUIๅฎž็Žฐ ๐ŸŽ‰ Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). ๅŸบไบŽYOLOv5็š„v5็‰ˆๆœฌๅ’Œv6็‰ˆๆœฌๅŠJavacrๅคงไฝฌ็š„UI้€ป่พ‘่ฟ›่กŒ็ผ–ๅ†™

EricFang 12 Dec 28, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenbergโ€“Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022