Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

Related tags

Deep LearningDSP
Overview

DSP

Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021.

Authors: Li Gao, Jing Zhang, Lefei Zhang, Dacheng Tao.

Prerequisite

  • CUDA/CUDNN
  • Python3
  • PyTorch==1.7
  • Packages found in requirements.txt
  1. Creat a new conda environment
conda create -n dsp_env python=3.7
conda activate dsp_env
conda install pytorch=1.7 torchvision torchaudio cudatoolkit -c pytorch
pip install -r requirements.txt
  1. Download the code from github and change the directory
git clone https://github.com/GaoLii/DSP/
cd DSP
  1. Prepare dataset

Download Cityscapes, GTA5 and SYNTHIA dataset, then organize the folder as follows:

├── ../../dataset/
│   ├── Cityscapes/     
|   |   ├── gtFine/
|   |   ├── leftImg8bit/
│   ├── GTA5/
|   |   ├── images/
|   |   ├── labels/
│   ├── RAND_CITYSCAPES/ 
|   |   ├── GT/
|   |   ├── RGB/
...

Training and Evaluation example

Training and evaluation are on a single Tesla V100 GPU with 16G memory.

Train with unsupervised domain adaptation

GTA5->CityScapes

python train_DSP.py --config ./configs/configUDA_gta.json --name UDA_gta

SYNTHIA->CityScapes

python train_DSP.py --config ./configs/configUDA_syn.json --name UDA_syn

Evaluation

python evaluateUDA.py --model-path checkpoint.pth

Pretrained models

This model should be unzipped in the '../saved' folder.

License

The code is heavily borrowed from DACS.

If you use this code in your research please consider citing

@article{Gao_2021,
   title={DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation},
   url={https://arxiv.org/abs/2107.09600},
   DOI={10.1145/3474085.3475186},
   journal={Proceedings of the 29th ACM International Conference on Multimedia},
   publisher={ACM},
   author={Gao, Li and Zhang, Jing and Zhang, Lefei and Tao, Dacheng},
   year={2021},
   month={Oct}
}
  
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022