Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Related tags

Deep LearningIVR
Overview

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

99% of the code in this repository originates from this link.

ICCV 2021 paper

Jeesoo Kim1, Junsuk Choe2, Sangdoo Yun3, Nojun Kwak1

1 Seoul National University 2 Sogang University 3 Naver AI Lab

Weakly-supervised object localization (WSOL) enables finding an object using a dataset without any localization information. By simply training a classification model using only image-level annotations, the feature map of the model can be utilized as a score map for localization. In spite of many WSOL methods proposing novel strategies, there has not been any de facto standard about how to normalize the class activation map (CAM). Consequently, many WSOL methods have failed to fully exploit their own capacity because of the misuse of a normalization method. In this paper, we review many existing normalization methods and point out that they should be used according to the property of the given dataset. Additionally, we propose a new normalization method which substantially enhances the performance of any CAM-based WSOL methods. Using the proposed normalization method, we provide a comprehensive evaluation over three datasets (CUB, ImageNet and OpenImages) on three different architectures and observe significant performance gains over the conventional min-max normalization method in all the evaluated cases.

RubberDuck

Re-evaluated performance of several WSOL methods using different normalization methods. Comparison of several WSOL methods with different kinds of normalization methods for a class activation map. The accuracy has been evaluated under MaxBoxAccV2 with CUB-200-2011 dataset. All scores in this figure are the average scores of ResNet50, VGG16, and InceptionV3. In all WSOL methods, the performance using our normalization method, IVR, is the best.

Prerequisite

Dataset preparation, Code dependencies are available in the original repository. [Evaluating Weakly Supervised Object Localization Methods Right (CVPR 2020)] (paper)
This repository is highly dependent on this repo and we highly recommend users to refer the original one.

Licenses

The licenses corresponding to the dataset are summarized as follows

Dataset Images Class Annotations Localization Annotations
ImageNetV2 See the original Github See the original Github CC-BY-2.0 NaverCorp.
CUBV2 Follows original image licenses. See here. CC-BY-2.0 NaverCorp. CC-BY-2.0 NaverCorp.
OpenImages CC-BY-2.0 (Follows original image licenses. See here) CC-BY-4.0 Google LLC CC-BY-4.0 Google LLC

Detailed license files are summarized in the release directory.

Note: At the time of collection, images were marked as being licensed under the following licenses:

Attribution-NonCommercial License
Attribution License
Public Domain Dedication (CC0)
Public Domain Mark

However, we make no representations or warranties regarding the license status of each image. You should verify the license for each image yourself.

WSOL training and evaluation

We additionally support the following normalization methods:

  • Normalization.
    • Min-max
    • Max
    • PaS
    • IVR

Below is an example command line for the train+eval script.

python main.py --dataset_name CUB \
               --architecture vgg16 \
               --wsol_method cam \
               --experiment_name CUB_vgg16_CAM \
               --pretrained TRUE \
               --num_val_sample_per_class 5 \
               --large_feature_map FALSE \
               --batch_size 32 \
               --epochs 50 \
               --lr 0.00001268269 \
               --lr_decay_frequency 15 \
               --weight_decay 5.00E-04 \
               --override_cache FALSE \
               --workers 4 \
               --box_v2_metric True \
               --iou_threshold_list 30 50 70 \
               --eval_checkpoint_type last
               --norm_method ivr

See config.py for the full descriptions of the arguments, especially the method-specific hyperparameters.

Experimental results

Details about experiments are available in the paper.

Code license

This project is distributed under MIT license.

Copyright (c) 2020-present NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5. Citation

@article{kim2021normalization,
  title={Normalization Matters in Weakly Supervised Object Localization},
  author={Kim, Jeesoo and Choe, Junsuk and Yun, Sangdoo and Kwak, Nojun},
  journal={arXiv preprint arXiv:2107.13221},
  year={2021}
}
@inproceedings{choe2020cvpr,
  title={Evaluating Weakly Supervised Object Localization Methods Right},
  author={Choe, Junsuk and Oh, Seong Joon and Lee, Seungho and Chun, Sanghyuk and Akata, Zeynep and Shim, Hyunjung},
  year = {2020},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  note = {to appear},
  pubstate = {published},
  tppubtype = {inproceedings}
}
@article{wsol_eval_journal_submission,
  title={Evaluation for Weakly Supervised Object Localization: Protocol, Metrics, and Datasets},
  author={Choe, Junsuk and Oh, Seong Joon and Chun, Sanghyuk and Akata, Zeynep and Shim, Hyunjung},
  journal={arXiv preprint arXiv:2007.04178},
  year={2020}
}
Owner
Jeesoo Kim
Ph.D candidate at Seoul National University
Jeesoo Kim
Facebook Research 605 Jan 02, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022