Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Overview

Patch2Pix for Accurate Image Correspondence Estimation

This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pix: Epipolar-Guided Pixel-Level Correspondences. [Paper] [Video].

Overview To use our code, first download the repository:

git clone [email protected]:GrumpyZhou/patch2pix.git

Setup Running Environment

The code has been tested on Ubuntu (16.04&18.04) with Python 3.7 + Pytorch 1.7.0 + CUDA 10.2.
We recommend to use Anaconda to manage packages and reproduce the paper results. Run the following lines to automatically setup a ready environment for our code.

conda env create -f environment.yml
conda activte patch2pix

Download Pretrained Models

In order to run our examples, one needs to first download our pretrained Patch2Pix model. To further train a Patch2Pix model, one needs to download the pretrained NCNet. We provide the download links in pretrained/download.sh. To download both, one can run

cd pretrained
bash download.sh

Evaluation

❗️ NOTICE ❗️ : In this repository, we only provide examples to estimate correspondences using our Patch2Pix implemenetation.

To reproduce our evalutions on HPatches, Aachen and InLoc benchmarks, we refer you to our toolbox for image matching: image-matching-toolbox. There, you can also find implementation to reproduce the results of other state-of-the-art methods that we compared to in our paper.

Matching Examples

In our notebook examples/visualize_matches.ipynb , we give examples how to obtain matches given a pair of images using both Patch2Pix (our pretrained) and NCNet (our adapted). The example image pairs are borrowed from D2Net, one can easily replace it with your own examples.

Training

Notice the followings are necessary only if you want to train a model yourself.

Data preparation

We use MegaDepth dataset for training. To keep more data for training, we didn't split a validation set from MegaDepth. Instead we use the validation splits of PhotoTourism. The following steps describe how to prepare the same training and validation data that we used.

Preapre Training Data

  1. We preprocess MegaDepth dataset following the preprocessing steps proposed by D2Net. For details, please checkout their "Downloading and preprocessing the MegaDepth dataset" section in their github documentation.

  2. Then place the processed MegaDepth dataset under data/ folder and name it as MegaDepth_undistort (or create a symbolic link for it).

  3. One can directly download our pre-computred training pairs using our download script.

cd data_pairs
bash download.sh

In case one wants to generate pairs with different settings, we provide notebooks to generate pairs from scratch. Once you finish step 1 and 2, the training pairs can be generated using our notebook data_pairs/prep_megadepth_training_pairs.ipynb.

Preapre Validation Data

  1. Use our script to dowload and extract the subset of train and val sequences from the PhotoTourism dataset.
cd data
bash prepare_immatch_val_data.sh
  1. Precompute image pairwise overlappings for fast loading of validation pairs.
# Under the root folder: patch2pix/
python -m data_pairs.precompute_immatch_val_ovs \
		--data_root data/immatch_benchmark/val_dense

Training Examples

To train our best model:

python -m train_patch2pix --gpu 0 \
    --epochs 25 --batch 4 \
    --save_step 1 --plot_counts 20 --data_root 'data' \
    --change_stride --panc 8 --ptmax 400 \
    --pretrain 'pretrained/ncn_ivd_5ep.pth' \
    -lr 0.0005 -lrd 'multistep' 0.2 5 \
    --cls_dthres 50 5 --epi_dthres 50 5  \
    -o 'output/patch2pix' 

The above command will save the log file and checkpoints to the output folder specified by -o. Our best model was trained on a 48GB GPU. To train on a smaller GPU, e.g, with 12 GB, one can either set --batch 1 or --ptmax 250 which defines the maximum number of match proposals to be refined for each image pair. However, those changes might also decrease the training performance according to our experience. Notice, during the testing, our network only requires 12GB GPU.

Usage of Visdom Server Our training script is coded to monitor the training process using Visdom. To enable the monitoring, one needs to:

  1. Run a visdom sever on your localhost, for example:
# Feel free to change the port
python -m visdom.server -port 9333 \
-env_path ~/.visdom/patch2pix
  1. Append options -vh 'localhost' -vp 9333 to the commands of the training example above.

BibTeX

If you use our method or code in your project, please cite our paper:

@inproceedings{ZhouCVPRpatch2pix,
        author       = "Zhou, Qunjie and Sattler, Torsten and Leal-Taixe, Laura",
        title        = "Patch2Pix: Epipolar-Guided Pixel-Level Correspondences",
        booktitle    = "CVPR",
        year         = 2021,
}
Owner
Qunjie Zhou
PhD Candidate at the Dynamic Vision and Learning Group.
Qunjie Zhou
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022