Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Overview

Query Variation Generators

This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators".

Setup

Install the requirements using

pip install -r requirements.txt

Steps to reproduce the results

First we need to generate_weak supervsion for the desired test sets. We can do that with the scripts/generate_weak_supervision.py. In the paper we test for TREC-DL ('msmarco-passage/trec-dl-2019/judged') and ANTIQUE ('antique/train/split200-valid'), but any IR-datasets (https://ir-datasets.com/index.html) can be used here (as TASK).

python ${REPO_DIR}/examples/generate_weak_supervision.py 
    --task $TASK \
    --output_dir $OUT_DIR 

This will generate one query variation for each method for the original queries. After this, we manually annotated the query variations generated, in order to keep only valid ones for analysis. For that we use analyze_weak_supervision.py (prepares data for manual anotation) and analyze_auto_query_generation_labeling.py (combines auto labels and anotations.).

However, for reproducing the results we can directly use the annotated query set to test neural ranking models robustness (RQ1):

python ${REPO_DIR}/disentangled_information_needs/evaluation/query_rewriting.py \
        --task 'irds:msmarco-passage/trec-dl-2019/judged' \
        --output_dir $OUT_DIR/ \
        --variations_file $OUT_DIR/$VARIATIONS_FILE_TREC_DL \
        --retrieval_model_name "BM25+KNRM" \
        --train_dataset "irds:msmarco-passage/train" \
        --max_iter $MAX_ITER

by using the annotated variations file directly here "$OUT_DIR/$VARIATIONS_FILE_TREC_DL". The same can be done to run rank fusion (RQ2) by replacing query_rewriting.py with rank_fusion.py.

The scripts evaluate_weak_supervision.sh and evaluate_rank_fusion.sh run all models and datasets for both research questions . The first generates the main table of results, Table 4 in the paper, and the second generates the tables for the rank fusion experiments (only available in the Arxiv version of the paper).

Modules and Folders

  • scripts: Contain most of the analysis scripts and also commands to run entire experiments.
  • examples: Contain an example on how to generate query variations.
  • disentangled_information_needs/evaluation: Scripts to evaluate robustness of models for query variations and also to evaluate rank fusion of query variations.
  • disentangled_information_needs/transformations: Methods to generate query variations.
Owner
Gustavo Penha
Researcher - IR - RecSys - ML - NLP. https://linktr.ee/guzpenha
Gustavo Penha
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Fang Zhonghao 13 Nov 19, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022