Forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE

Overview

EAST_ICPR: EAST for ICPR MTWI 2018 CHALLENGE

Introduction

This is a repository forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE.
Origin Repository: argman/EAST - A tensorflow implementation of EAST text detector
Origin Author: argman

Author: Haozheng Li
Email: [email protected] or [email protected]

Contents

  1. Transform
  2. Models
  3. Demo
  4. Train
  5. Test
  6. Results

Transform

Some data in the dataset is abnormal, just like ICPR MTWI 2018[BaiduYun]. Abnormal means that the ground true labels are anticlockwise, or the images are not in 3 channels. Then errors like 'poly in wrong direction' will occur while using argman/EAST.

So I wrote a matlab program to check and transform the dataset. The program named <transform.m> is in the folder 'data_transform/' and its parameters are descripted as bellow:

icpr_img_folder = 'image_9000\';                   %origin images
icpr_txt_folder = 'txt_9000\';                     %origin ground true labels
icdar_img_folder = 'ICPR2018\';                    %transformed images
icdar_gt_folder = 'ICPR2018\';                     %transformed ground true labels
icdar_img_abnormal_folder = 'ICPR2018_abnormal\';  %images not in 3 channels, which give errors in argman/EAST
icdar_gt_abnormal_folder = 'ICPR2018_abnormal\';   %transformed ground true labels

%images and ground true labels files must be renamed as <img_1>, <img_2>, ..., <img_xxx> while using argman/EAST
first_index =  0;                                  %first index of the dataset
transform_list_name = 'transform_list.txt';        %file name of the rename list

Note: For abnormal images not in 3 channels, please transform them to normal ones through other tools like Format Factory. Then add the right data to the <icdar_img_folder> and <icdar_gt_folder>, so finally you get a whole normal dataset which has been checked and transformed.

Models

  1. Resnet_V1_50 Models trained on ICPR MTWI 2018 (train): [100k steps] [500k steps] [1035k steps]
  2. Resnet_V1_101 Models trained on ICPR MTWI 2018 (train) + ICDAR 2017 MLT (train + val) + RCTW-17 (train): [100k steps]
  3. Resnet_V1_101 Models pre-trained on Models-2, then trained on just ICPR MTWI 2018 (train): [987k steps]
  4. (In argman/EAST) Resnet_V1_50 Models trained on ICDAR 2013 (train) + ICDAR 2015 (train): [50k steps]
  5. (In argman/EAST) Resnet_V1_50 Models provided by tensorflow slim: [slim_resnet_v1_50]

Demo

Download the pre-trained models and run:

python run_demo_server.py --checkpoint-path models/east_icpr2018_resnet_v1_50_rbox_1035k/

Then Open http://localhost:8769 for the web demo server, or get the results in 'static/results/'.
Note: See argman/EAST#demo for more details.

Train

Prepare the training set and run:

python multigpu_train.py --gpu_list=0 --input_size=512 --batch_size_per_gpu=8 \
--checkpoint_path=models/east_icpr2018_resnet_v1_50_rbox/ \
--text_scale=512 --training_data_path=data/ICPR2018/ --geometry=RBOX \
--learning_rate=0.0001 --num_readers=18 --max_steps=50000

Note 1: Images and ground true labels files must be renamed as <img_1>, <img_2>, ..., <img_xxx> while using argman/EAST. Please see the examples in the folder 'training_samples/'.
Note 2: If --restore=True, training will restore from checkpoint and ignore the --pretrained_model_path. If --restore=False, training will delete checkpoint and initialize with the --pretrained_model_path (if exists).
Note 3: See argman/EAST#train for more details.

Test

Names of the images in ICPR MTWI 2018 are abnormal. Like <LB1gXi2JVXXXXXUXFXXXXXXXXXX.jpg> but not <img_10001.jpg>. Then errors will occur while using argman/EAST#test.

So I wrote two matlab programs to rename and inversely rename the dataset. Before evaluating, run the program named <rename.m> to make names of the images normal. This program is in the folder 'data_transform/' and its parameters are descripted as bellow:

icpr_img_folder = 'image_10000\';                      %origin images
icdar_img_folder = 'ICPR2018_test\';                   %transformed images
icdar_img_abnormal_folder = 'ICPR2018_test_abnormal\'; %images not in 3 channels, which give errors in argman/EAST

icpr_count =  10000;                                   %first index of the dataset
rename_list_name = 'rename_list.txt';                  %file name of the rename list

Note: Just like <transform.m>, please transform abnormal images through other tools like Format Factory.

After you have prepared the test set, run:

python eval.py --test_data_path=data/ICPR2018/ --gpu_list=0 \
--checkpoint_path=models/east_icpr2018_resnet_v1_50_rbox_1035k/ --output_dir=results/1035k/

Then get the results in 'results/'.

Finally inversely rename the result labels files from <img_10001.txt> to <LB1gXi2JVXXXXXUXFXXXXXXXXXX.txt> according to the rename list generated by <rename.m>. Run the program named <rename_inverse.m> which is in the folder 'data_transform/' and its parameters are descripted as bellow:

rename_list_name = 'rename_list.txt';  %file name of the rename list
icpr_img_folder = 'image_10000\';      %origin images
icpr_txt_folder = 'results\';          %result labels files generated by argman/EAST
icdar_gt_folder = 'txt_10000\';        %inversely renamed result labels files

Then zip the results in 'txt_10000/' and submit it to the ICPR MTWI 2018 CHALLENGE.

Results

Finally our model <east_icpr2018_resnet_v1_50_rbox_1035k> rank 31 in the ICPR MTWI 2018 CHALLENGE:
image

Here are some results on ICPR MTWI 2018:
image
image
image
image
image

Have fun!! :)

Owner
Haozheng Li
Computer Vision, Reinforcement Learning
Haozheng Li
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Histogram specification using openCV in python .

histogram specification using openCV in python . Have to input miu and sigma to draw gausssian distribution which will be used to map the input image . Example input can be miu = 128 sigma = 30

Tamzid hasan 6 Nov 17, 2021
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"

Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021] Official PyTorch implementation

ViCoS Lab 169 Dec 30, 2022
Recognizing cropped text in natural images.

ASTER: Attentional Scene Text Recognizer with Flexible Rectification ASTER is an accurate scene text recognizer with flexible rectification mechanism.

Baoguang Shi 681 Jan 02, 2023
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Shaohui Ruan 3.3k Dec 30, 2022