A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Overview

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition

The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition.
[paper] [supplemental material] [arXiv]

If you find our work or the codebase inspiring and useful to your research, please cite

@inproceedings{yuan2021DIN,
  title={Spatio-Temporal Dynamic Inference Network for Group Activity Recognition},
  author={Yuan, Hangjie and Ni, Dong and Wang, Mang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={7476--7485},
  year={2021}
}

Dependencies

  • Software Environment: Linux (CentOS 7)
  • Hardware Environment: NVIDIA TITAN RTX
  • Python 3.6
  • PyTorch 1.2.0, Torchvision 0.4.0
  • RoIAlign for Pytorch

Prepare Datasets

  1. Download publicly available datasets from following links: Volleyball dataset and Collective Activity dataset.
  2. Unzip the dataset file into data/volleyball or data/collective.
  3. Download the file tracks_normalized.pkl from cvlab-epfl/social-scene-understanding and put it into data/volleyball/videos

Using Docker

  1. Checkout repository and cd PROJECT_PATH

  2. Build the Docker container

docker build -t din_gar https://github.com/JacobYuan7/DIN_GAR.git#main
  1. Run the Docker container
docker run --shm-size=2G -v data/volleyball:/opt/DIN_GAR/data/volleyball -v result:/opt/DIN_GAR/result --rm -it din_gar
  • --shm-size=2G: To prevent ERROR: Unexpected bus error encountered in worker. This might be caused by insufficient shared memory (shm)., you have to extend the container's shared memory size. Alternatively: --ipc=host
  • -v data/volleyball:/opt/DIN_GAR/data/volleyball: Makes the host's folder data/volleyball available inside the container at /opt/DIN_GAR/data/volleyball
  • -v result:/opt/DIN_GAR/result: Makes the host's folder result available inside the container at /opt/DIN_GAR/result
  • -it & --rm: Starts the container with an interactive session (PROJECT_PATH is /opt/DIN_GAR) and removes the container after closing the session.
  • din_gar the name/tag of the image
  • optional: --gpus='"device=7"' restrict the GPU devices the container can access.

Get Started

  1. Train the Base Model: Fine-tune the base model for the dataset.

    # Volleyball dataset
    cd PROJECT_PATH 
    python scripts/train_volleyball_stage1.py
    
    # Collective Activity dataset
    cd PROJECT_PATH 
    python scripts/train_collective_stage1.py
  2. Train with the reasoning module: Append the reasoning modules onto the base model to get a reasoning model.

    1. Volleyball dataset

      • DIN

        python scripts/train_volleyball_stage2_dynamic.py
        
      • lite DIN
        We can run DIN in lite version by setting cfg.lite_dim = 128 in scripts/train_volleyball_stage2_dynamic.py.

        python scripts/train_volleyball_stage2_dynamic.py
        
      • ST-factorized DIN
        We can run ST-factorized DIN by setting cfg.ST_kernel_size = [(1,3),(3,1)] and cfg.hierarchical_inference = True.

        Note that if you set cfg.hierarchical_inference = False, cfg.ST_kernel_size = [(1,3),(3,1)] and cfg.num_DIN = 2, then multiple interaction fields run in parallel.

        python scripts/train_volleyball_stage2_dynamic.py
        

      Other model re-implemented by us according to their papers or publicly available codes:

      • AT
        python scripts/train_volleyball_stage2_at.py
        
      • PCTDM
        python scripts/train_volleyball_stage2_pctdm.py
        
      • SACRF
        python scripts/train_volleyball_stage2_sacrf_biute.py
        
      • ARG
        python scripts/train_volleyball_stage2_arg.py
        
      • HiGCIN
        python scripts/train_volleyball_stage2_higcin.py
        
    2. Collective Activity dataset

      • DIN
        python scripts/train_collective_stage2_dynamic.py
        
      • DIN lite
        We can run DIN in lite version by setting 'cfg.lite_dim = 128' in 'scripts/train_collective_stage2_dynamic.py'.
        python scripts/train_collective_stage2_dynamic.py
        

Another work done by us, solving GAR from the perspective of incorporating visual context, is also available.

@inproceedings{yuan2021visualcontext,
  title={Learning Visual Context for Group Activity Recognition},
  author={Yuan, Hangjie and Ni, Dong},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={4},
  pages={3261--3269},
  year={2021}
}
Owner
A Ph.D. candidate and a realistic idealist.
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022