Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

Related tags

Deep LearningABME
Overview

ABME (ICCV2021)

PWC PWC

Junheum Park, Chul Lee, and Chang-Su Kim

Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolation" [paper]

Requirements

  • PyTorch 1.7
  • CUDA 11.0
  • CuDNN 8.0.5
  • python 3.8

Installation

Create conda environment:

    $ conda create -n ABME python=3.8 anaconda
    $ conda activate ABME
    $ pip install opencv-python
    $ conda install pytorch==1.7 torchvision cudatoolkit=11.0 -c pytorch

Download repository:

    $ git clone https://github.com/JunHeum/ABME.git

Download pre-trained model parameters:

    $ unzip ABME_Weights.zip

Check your nvcc version:

    $ nvcc --version
  • To install correlation layer, you should match your nvcc version with cudatoolkit version of your conda environment. [nvcc_setting]

Install correlation layer:

    $ cd correlation_package
    $ python setup.py install

Quick Usage

Generate an intermediate frame on your pair of frames:

    $ python run.py --first images/im1.png --second images/im3.png --output images/im2.png

Test

  1. Download the datasets.
  2. Copy the path of the test dataset. (e.g., /hdd/vimeo_interp_test)
  3. Parse this path into the --dataset_root argument.
  4. (optional) You can ignore the --is_save. But, it yields a slightly different performance than evaluation on saved images.
    $ python test.py --name ABME --is_save --Dataset ucf101 --dataset_root /where/is/your/ucf101_dataset/path
    $ python test.py --name ABME --is_save --Dataset vimeo --dataset_root /where/is/your/vimeo_dataset/path
    $ python test.py --name ABME --is_save --Dataset SNU-FILM-all --dataset_root /where/is/your/FILM_dataset/path
    $ python test.py --name ABME --is_save --Dataset Xiph_HD --dataset_root /where/is/your/Xiph_dataset/path
    $ python test.py --name ABME --is_save --Dataset X4K1000FPS --dataset_root /where/is/your/X4K1000FPS_dataset/path

Experimental Results

We provide interpolated frames on test datasets for fast comparison or users with limited GPU memory. Especially, the test on X4K1000FPS requires at least 20GB of GPU memory.

Table

Train

We plan to share train codes soon!

Citation

Please cite the following paper if you feel this repository useful.

    @inproceedings{park2021ABME,
        author    = {Park, Junheum and Lee, Chul and Kim, Chang-Su}, 
        title     = {Asymmetric Bilateral Motion Estimation for Video Frame Interpolation}, 
        booktitle = {International Conference on Computer Vision},
        year      = {2021}
    }

License

See MIT License

Owner
Junheum Park
BS: EE, Korea University Grad: EE, Korea University (Current)
Junheum Park
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022