Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

Overview

arXiv

Dual Contrastive Learning Adversarial Generative Networks (DCLGAN)

We provide our PyTorch implementation of DCLGAN, which is a simple yet powerful model for unsupervised Image-to-image translation. Compared to CycleGAN, DCLGAN performs geometry changes with more realistic results. Compared to CUT, DCLGAN is usually more robust and achieves better performance. A viriant, SimDCL (Similarity DCLGAN) also avoids mode collapse using a new similarity loss.

DCLGAN is a general model performing all kinds of Image-to-Image translation tasks. It achieves SOTA performances in most tasks that we have tested.

Dual Contrastive Learning for Unsupervised Image-to-Image Translation
Junlin Han, Mehrdad Shoeiby, Lars Petersson, Mohammad Ali Armin
DATA61-CSIRO and Australian National University
In NTIRE, CVPRW 2021.

Our pipeline is quite straightforward. The main idea is a dual setting with two encoders to capture the variability in two distinctive domains.

Example Results

Unpaired Image-to-Image Translation

Qualitative results:

Quantitative results:

More visual results:

Prerequisites

Python 3.6 or above.

For packages, see requirements.txt.

Getting started

  • Clone this repo:
git clone https://github.com/JunlinHan/DCLGAN.git
  • Install PyTorch 1.4 or above and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

DCLGAN and SimDCL Training and Test

  • Download the grumpifycat dataset
bash ./datasets/download_cut_dataset.sh grumpifycat

The dataset is downloaded and unzipped at ./datasets/grumpifycat/.

  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

Train the DCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL 

Or train the SimDCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_SimDCL --model simdcl

We also support CUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cut --model cut

and fastCUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_fastcut --model fastcut

and CycleGAN:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cyclegan --model cycle_gan

The checkpoints will be stored at ./checkpoints/grumpycat_DCL/.

  • Test the DCL model:
python test.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL

The test results will be saved to an html file here: ./results/grumpycat_DCL/latest_test/.

DCLGAN, SimDCL, CUT and CycleGAN

DCLGAN is a more robust unsupervised image-to-image translation model compared to previous models. Our performance is usually better than CUT & CycleGAN.

SIMDCL is a different version, it was designed to solve mode collpase. We recommend using it for small-scale, unbalanced dataset.

Datasets

Download CUT/CycleGAN/pix2pix datasets and learn how to create your own datasets.

Or download it here: https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/.

Apply a pre-trained DCL model and evaluate

We provide our pre-trained DCLGAN models for:

Cat <-> Dog : https://drive.google.com/file/d/1-0SICLeoySDG0q2k1yeJEI2QJvEL-DRG/view?usp=sharing

Horse <-> Zebra: https://drive.google.com/file/d/16oPsXaP3RgGargJS0JO1K-vWBz42n5lf/view?usp=sharing

CityScapes: https://drive.google.com/file/d/1ZiLAhYG647ipaVXyZdBCsGeiHgBmME6X/view?usp=sharing

Download the pre-tained model, unzip it and put it inside ./checkpoints (You may need to create checkpoints folder by yourself if you didn't run the training code).

Example usage: Download the dataset of Horse2Zebra and test the model using:

python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_dcl

For FID score, use pytorch-fid.

Test the FID for Horse-> Zebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_B ./results/horse2zebra_dcl/test_latest/images/real_B

and Zorse-> Hebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_A ./results/horse2zebra_dcl/test_latest/images/real_A

Citation

If you use our code or our results, please consider citing our paper. Thanks in advance!

@inproceedings{han2021dcl,
  title={Dual Contrastive Learning for Unsupervised Image-to-Image Translation},
  author={Junlin Han and Mehrdad Shoeiby and Lars Petersson and Mohammad Ali Armin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}

If you use something included in CUT, you may also CUT.

@inproceedings{park2020cut,
  title={Contrastive Learning for Unpaired Image-to-Image Translation},
  author={Taesung Park and Alexei A. Efros and Richard Zhang and Jun-Yan Zhu},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

Contact

[email protected] or [email protected]

Acknowledgments

Our code is developed based on pytorch-CycleGAN-and-pix2pix and CUT. We thank the awesome work provided by CycleGAN and CUT. We thank pytorch-fid for FID computation. Great thanks to the anonymous reviewers, from both the main CVPR conference and NTIRE. They provided invaluable feedbacks and suggestions.

Owner
Computer vision.
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
113 Nov 28, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt ZajÄ…c 22 Jul 20, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022