Project: Netflix Data Analysis and Visualization with Python

Overview

Project: Netflix Data Analysis and Visualization with Python

MyNetflixDashboard

Table of Contents

  1. General Info
  2. Installation
  3. Demo
  4. Usage and Main Functionalities
  5. Contributing

General Info

This is a compact Data Visualization project I worked on for fun and to deepen my knowledge about visualizations and graphs using python libraries.

From conception and design to every line of code, the entire Dashboard was worked on by myself. During this project, I was able to repeat and deepen what I had previously learned in my Data Science course of study. Especially, I was able to familiarize myself with pandas and work on my data visualization skills, which I greatly enjoied!

The dataset I used for the Netflix data analytics task consists of my personal Netflix data, which I requested through their website. You can get access to your own data through this link. Feel free to download it and use my code to look into your own viewing behaviour :)

Installation

Requirements: Make sure you have Python 3.7+ installed on your computer. You can download the latest version of Python here.

Req. Packages:

  • pandas
  • dash
  • dash_bootstrap_components
  • ploty.express
  • plotly.graph_objects

Demo

Demo_MyNetflixDashboard_komprimiert.mov

Usage and Main Functionalities

Want to know more about your own Netflix behaviour? For test usage you can download your own Netflix data. Just follow this link and Netflix will send you your personal data.

Please also refer to the comments within the code itself to get more information on the functionalities of the program.


0. Preparing the data for analysis

  • This part cleans up the original data and prepares it for analysis.
  • In the process, columns that are not needed are dropped.
  • Time data is converted into appropriate time formats and split into several columns. The days of the week are added.
  • In addition, the titles of the movies/series are split (title, season number, episode name).

1. Analysis

  • This part of the code is about analyzing the data.
  • We find out how many movies or series were watched over the entire period. We also count the total number of hours Netflix was watched.
  • A pie chart is created that shows which days of the week are watched.
  • In addition, the top 10 series that were watched the longest (in terms of total duration) are displayed.
  • A line chart shows Netflix viewing behavior over the years, counting the total number of hours Netflix was watched.

NetflixOverTime

2. Dash App Layout

  • plotly's Dash is now used to create an Interactive Dashboard of Netflix data.
  • The individual graphics and texts are arranged in rows and containers.
  • This part also includes a dropdown menu that the user can interact with.

3. App Callback

  • Here we connect an interactive bar chart to the Dash Components.
  • The chart represents our total annual hours of Netflix watched, grouped by month. The chart is filterable by year.

MonthlyViews

Contributing

Your comments, suggestions, and contributions are welcome. Please feel free to contribute pull requests or create issues for bugs and feature requests.

Owner
Kathrin Hälbich
Data Science Student and PR- & Marketing-Expert
Kathrin Hälbich
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022