A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

Overview

Academic-DeepNeuralNetsFromScratch

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

This project was constructed for the Introduction to Machine Learning course, class 605.649 section 84 at Johns Hopkins University. FranceLab4 is a machine learning toolkit that implements several algorithms for classification and regression tasks. Specifically, the toolkit coordinates a linear network, a logistic regressor, an autoencoder, and a neural network that implements backpropagation; it also leverages data structures built in the preceding labs. FranceLab4 is a software module written in Python 3.7 that facilitates such algorithms.

##Notes for Graders All files of concern for this project (with the exception of main.py) may be found in the Linear_Network, Logistic_Regression, and Neural_Network folders. I kept most of my files from Projects 1, 2, and 3 because I ended up using cross validation, encoding, and other helper methods. However, these three folders contains the neural network algorithms of interest.

I have created blocks of code for you to test and run each algorithm if you choose to do so. In __main__.py scroll to the bottom and find the main function. Simply comment or uncomment blocks of code to test if desired.

Each neural network and autoencoder constructed are sub-classed / inherited from the NeuralNet class in neural_net.py. I simply initialize the class differently in order to construct an autoencoder, a feed-forward neural network, or a combination of both.

Data produced in my paper were run with KFCV. However within the main program, you may notice that the number of folds k has been reduced to 2 to make the analysis quicker and the console output easier to follow.

The construction of a linear network begins on line 84 in __main__.py.

The construction of a logistic regressor begins on line 102 in __main__.py.

The construction of an autoencoder only begins on line 128 in __main__.py.

The construction of a feed-forward neural network only begins on line 141 in __main__.py.

The construction of an autoencoder that is trained, the decoder removed, and the encoder attached to a new hidden layer with a prediction layer attached to form a new neural network begins on line 221 in __main__.py.

The code for the weight updates and backward and forward propagation may be found in the following files within the Neural_Network folder:

  • layer.py
  • optimizer_function.py
  • neural_net.py

__main__.py is the driver behind importing the dataset, cleaning the data, coordinating KFCV, and initializing each of the neural network algorithms.

Running FranceLab4

  1. Ensure Python 3.7 is installed on your computer.
  2. Navigate to the Lab4 directory. For example, cd User\Documents\PythonProjects\FranceLab4. Do NOT cd into the Lab4 module.
  3. Run the program as a module: python3 -m Lab4.
  4. Input and output files ar located in the io_files subdirectory.

FranceLab4 Usage

usage: python3 -m Lab4
Owner
Kordel K. France
Artificial Intelligence Engineer, Algorithmic Trader. I build software that finds order within chaos.
Kordel K. France
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022