Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Related tags

Deep LearningA-NeRF
Overview

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Paper | Website | Data

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose
Shih-Yang Su, Frank Yu, Michael Zollhรถfer, and Helge Rhodin
Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS 2021)

Setup

Setup environment

conda create -n anerf python=3.8
conda activate anerf

# install pytorch for your corresponding CUDA environments
pip install torch

# install pytorch3d: note that doing `pip install pytorch3d` directly may install an older version with bugs.
# be sure that you specify the version that matches your CUDA environment. See: https://github.com/facebookresearch/pytorch3d
pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu102_pyt190/download.html

# install other dependencies
pip install -r requirements.txt

Download pre-processed data and pre-trained models

We provide pre-processed data in .h5 format, as well as pre-trained characters for SURREAL and Mixamo dataset.

Please see data/README.md for details.

Testing

You can use run_render.py to render the learned models under different camera motions, or retarget the character to different poses by

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type bullet --render_res 512 512 \
                     --white_bkgd --runname surreal_bullet

Here,

  • --dataset specifies the data source for poses,
  • --entry specifices the particular subset from the dataset to render,
  • --render_type defines the camera motion to use, and
  • --render_res specifies the height and width of the rendered images.

Therefore, the above command will render 512x512 the learned SURREAL character with bullet-time effect like the following (resizsed to 256x256):

The output can be found in render_output/surreal_bullet/.

You can also extract mesh for the learned character:

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type mesh --runname surreal_mesh

You can find the extracted .ply files in render_output/surreal_mesh/meshes/.

To render the mesh as in the paper, run

python render_mesh.py --expname surreal_mesh 

which will output the rendered images in render_output/surreal_mesh/mesh_render/ like the following:

You can change the setting in run_render.py to create your own rendering configuration.

Training

We provide template training configurations in configs/ for different settings.

To train A-NeRF on our pre-processed SURREAL dataset,

python run_nerf.py --config configs/surreal/surreal.txt --basedir logs  --expname surreal_model

The trained weights and log can be found in logs/surreal_model.

To train A-NeRF on our pre-processed Mixamo dataset with estimated poses, run

python run_nerf.py --config configs/mixamo/mixamo.txt --basedir log_mixamo/ --num_workers 8 --subject archer --expname mixamo_archer

This will train A-NeRF on Mixamo Archer with pose refinement for 500k iterations, with 8 worker threads for the dataloader.

You can also add --use_temp_loss --temp_coef 0.05 to optimize the pose with temporal constraint.

Additionally, you can specify --opt_pose_stop 200000 to stop the pose refinement at 200k iteraions to only optimize the body models for the remaining iterations.

To finetune the learned model, run

python run_nerf.py --config configs/mixamo/mixamo_finetune.txt --finetune --ft_path log_mixamo/mixamo_archer/500000.tar --expname mixamo_archer_finetune

This will finetune the learned Mixamo Archer for 200k with the already refined poses. Note that the pose will not be updated during this time.

Citation

@inproceedings{su2021anerf,
    title={A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose},
    author={Su, Shih-Yang and Yu, Frank and Zollh{\"o}fer, Michael and Rhodin, Helge},
    booktitle = {Advances in Neural Information Processing Systems},
    year={2021}
}

Acknowledgements

Owner
Shih-Yang Su
Enjoy working on ML/RL/CV/MIR related domain.
Shih-Yang Su
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022