LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

Overview

LibRerank

LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate. It also supports LambdaMART and DNN as initial ranker.

Get Started

Create virtual environment(optional)

pip install --user virtualenv
~/.local/bin/virtualenv -p python3 ./venv
source venv/bin/activate

Install LibRerank from source

git clone https://github.com/LibRerank-Community/LibRerank.git
cd LibRerank
make init 

Run example

Run initial ranker

bash example/run_ranker.sh

Run re-ranker

bash example/run_reranker.sh

We can choose to enter a config file like example/run_reranker.sh via the parameter setting_path. The config files for the different models can be found in example/config. We can also set various parameters directly from the command line. A list of supported parameters can be found in run_init_ranker.py and run_reranker.py.

Structure

librerank

Initial rankers

DNN: a naive algorithm that directly train a multi-layer perceptron network with input labels (e.g., clicks).

LambdaMART: the implementation of the LambdaMART model in From RankNet to LambdaRank to LambdaMART: An Overview

Re-ranking algorithms

DLCM: the implementation of the Deep Listwise Context Model in Learning a Deep Listwise Context Model for Ranking Refinement.

PRM: the implementation of the Personalized Re-ranking Model in Personalized Re-ranking for Recommendation

GSF: the implementation of the Groupwise Scoring Function in Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks.

miDNN: the implementation of the miDNN model in Globally Optimized Mutual Influence Aware Ranking in E-Commerce Search

SetRank: the implementation of the SetRank model in SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval.

Seq2Slate: the implementation of sequence-to-sequence model for re-ranking in Seq2Slate: Re-ranking and Slate Optimization with RNNs

EGRerank: the implementation of the Evaluator-Generator Reranking in AliExpress Learning-To-Rank: Maximizing Online Model Performance without Going Online

Data

We process two datasets, Ad and PRM Public, containing user and item features with recommendation lists for the experimentation with personalized re-ranking. The details of processed datasets are summarized in the following table

Dataset #item #list # user feature # item feature
Ad 349,404 483,049 8 6
PRM Public 2,851,766 1,295,496 3 24

Depending on the length of the initial ranking, the maximum length of initial lists (re-ranking size n) is set to 10 and 30 for Ad and PRM Public, respectively.

Ad

The original Ad dataset records 1 million users and 26 million ad display/click logs, with 8 user profiles (e.g., id, age, and occupation), 6 item features (e.g., id, campaign, and brand). Following previous work, We transform records of each user into ranking lists according to the timestamp of the user browsing the advertisement. Items that have been interacted with within five minutes are sliced into a list and the processed data is avaliable here. The detailed process is here.

PRM public

The original PRM public dataset contains re-ranking lists from a real-world e-commerce RS. Each record is a recommendation list consisting of 3 user profile features, 5 categorical, and 19 dense item features. Due to the memory limitation, we randomly sample 10% of lists and remained data is avaliable here. The detailed process is here.

High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
SPCL 48 Dec 12, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022