Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Overview

Vending_Machine_(Mesin_Penjual_Minuman)

Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Raw Sketch untuk Essay

Ringkasan

Pada tugas besar ini, kami akan membuat suatu program yang merepresentasikan sebuah Vending Machine atau Mesin Penjual Otomatis. Mesin ini akan menerima uang, menampilkan display minuman, memberikan diskon pada situasi tertentu, mengecek uang, memberi kembalian, serta memberikan output berupa minuman kepada pembeli.

Menampilkan Display

"Sebagai penjual, kami ingin pelanggan dapat melihat barang apa saja yang tersedia pada mesin kami."

Mesin akan menampilkan display ketika ada pelanggan yang ingin membeli minuman. Mesin akan menampilkan minuman-minuman yang tersedia pada mesin termasuk Kode Minuman, Nama Minuman, dan Harga Minuman. Pada proses ini, tampilan sangat berperan penting dalam memikat hati pelanggan. Maka dari itu, kami membuat bagian display ini semenarik mungkin.

Memilih Produk

"Sebagai penjual, kami ingin para pelanggan dapat memilih produk yang ditawarkan oleh mesin."

Kami menyediakan berbagai minuman pada mesin kami. Terdapat aneka teh, kopi, dan soft drink. Minuman jenis teh kami identifikasikan dengan kode 1, minuman jenis kopi kami identifikasikan dengan kode 2, serta jenis soft drink dengan kode 3. Masing-masing jenis terdapat 3 produk berbeda misalnya pada soft drink, terdapat Sprite, Fanta, dan Coca Cola.

Ketika pelanggan sudah menentukan minuman yang ingin mereka beli, mesin akan meminta Kode Minuman kepada pelanggan. Di sini, pelanggan harus memasukkan kode dengan benar supaya Mesin Penjual Minuman dapat berjalan dengan lancar.

Verifikasi Produk

"Sebagai penjual, kami tidak ingin mengecewakan pelanggan. Salah satunya adalah ketika pelanggan tidak sengaja memasukkan kode yang salah."

Dalam hal ini, dibuatlah program untuk memverifikasi suatu produk. Ketika pelanggan sudah memasukkan Kode Minuman, mesin akan memberikan pilihan kepada pelanggan. “Anda akan membeli Fanta. Apakah Anda sudah yakin?”. Jika barang yang ingin dibeli oleh pelanggan sudah benar, pelanggan akan diarahkan untuk menekan tombol “Ya” sebagai bentuk verifikasi kepada mesin. Namun, jika pelanggan keliru memasukkan kode, maka pelanggan harus menekan tombol “Tidak”.

Memberi Diskon

"Sebagai penjual, kamu ingin memberikan diskon khusus bagi mahasiswa ITB dan FMIPA ITB."

Setelah verifikasi produk, mesin akan menanyakan satu hal dari pelanggan sebelum beralih ke pembayaran. Di sini mesin akan menanyakan apakah pelanggan adalah Mahasiswa ITB atau bukan. Jika pelanggan adalah mahasiswa ITB, mesin akan memberikan diskon sebesar 10 %. Jika pelanggan adalah mahasiswa FMIPA ITB, mesin akan memberikan diskon sebesar 40 %.

Supaya mesin dapat mengenali pelanggan, mesin akan meminta NIM dari pelanggan. Jika NIM yang dimasukkan memiliki angka 160xxxxx, maka pelanggan tersebut adalah mahasiswa FMIPA ITB. Jika NIM yang dimasukkan memiliki angka 1xxxxxxx, maka pelanggan adalah mahasiswa ITB.

Menerima Uang

"Sebagai penjual, kami menginginkan mesin yang dapat menghitung dan menerima uang. Supaya kami dapat mengambil keuntungan dari sana."

Setelah penentuan diskon, mesin kami akan menghitung jumlah uang yang harus dimasukkan oleh pelanggan. Jika pelanggan memasukkan uang dengan nominal yang kurang dari harga minuman, maka mesin akan terus meminta jumlah uang yang kurang. Namun, jika pelanggan memasukkan uang dengan nominal yang lebih, mesin akan memberi kembalian kepada pelanggan.

Catatan: Tujuannya adalah untuk membuat program yang dapat menghitung jumlah uang yang harus dibayar serta mengenali nominal uang.

Memberi Minuman

Hal terakhir yang sangat krusial adalah memberi output berupa minuman kepada pelanggan.

Mesin kami akan memberi minuman sesuai dengan kode yang sudah dimasukkan oleh pelanggan. Kami juga memberikan pesan kepada pelanggan berupa “Terima kasih telah mengunjungi Mesin Penjual Minuman Kami.” “Have a Nice Day!”.

Owner
QueenLy
Bananas without the B is just pineapples
QueenLy
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023