TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

Overview

FOTS: Fast Oriented Text Spotting with a Unified Network

I am still working on this repo. updates and detailed instructions are coming soon!

Table of Contens

TensorFlow Versions

As for now, the pre-training code is tested on TensorFlow 1.12, 1.14 and 1.15. I may try to implement 2.x version in the future.

Other Requirements

GCC >= 6

Trained Models

Datasets

Train

Pre-train with SynthText

  1. Download pre-trained ResNet-50 from TensorFlow-Slim image classification model library page and place it at 'ckpt/resnet_v1_50' dir.
cd ckpt/resnet_v1_50
wget http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
tar -zxvf resnet_v1_50_2016_08_28.tar.gz
rm resnet_v1_50_2016_08_28.tar.gz
  1. Download Synth800k dataset and place it at data/SynthText/ dir to pre-train the whole net.

  2. Transform(Pre-process) the SynthText data into the ICDAR data format.

python data_provider/SynthText2ICDAR.py
  1. Train with SynthText for 10 epochs(with 1 GPU).
python train.py \
  --max_steps=715625 \
  --gpu_list='0' \
  --checkpoint_path=ckpt/synthText_10eps/ \
  --pretrained_model_path=ckpt/resnet_v1_50/resnet_v1_50.ckpt \
  --training_img_data_dir=data/SynthText/ \
  --training_gt_data_dir=data/SynthText/ \
  --icdar=False \
  1. Visualize pre-pretraining progress with TensorBoard.
tensorboard --logdir=ckpt/synthText_10eps/

Finetune with ICDAR 2015, ICDAR 2017 MLT or ICDAR 2013

(if you are using the pre-trained model, place all of the files in ckpt/synthText_10eps/)

  • Combine ICDAR data before training.

    1. Place ICDAR data under tmp/ foler.
    2. Run the following script to combine the data.
    python combine_ICDAR_data.py --year [year of ICDAR to train(13 or 15 or 17)]
    
  • ICDAR 2017 MLT/pre-finetune for ICDAR 2013 or ICDAR 2015 (text detection task only)

    • Train the pre-trained model with 9,000 images from ICDAR 2017 MLT training and validation datasets(with 1 GPU).
    python train.py \
      --gpu_list='0' \
      --checkpoint_path=ckpt/ICDAR17MLT/ \
      --pretrained_model_path=ckpt/synthText_10eps/ \
      --train_stage=0 \
      --training_img_data_dir=data/ICDAR17MLT/imgs/ \
      --training_gt_data_dir=data/ICDAR17MLT/gts/
    
  • ICDAR 2015

    • Train the model with 1,000 images from ICDAR 2015 training dataset and 229 images from ICDAR 2013 training datasets(with 1 GPU).
    python train.py \
      --gpu_list='0' \
      --checkpoint_path=ckpt/ICDAR15/ \
      --pretrained_model_path=ckpt/ICDAR17MLT/ \
      --training_img_data_dir=data/ICDAR15+13/imgs/ \
      --training_gt_data_dir=data/ICDAR15+13/gts/
    
  • ICDAR 2013(horizontal text only)

    • Train the model with 229 images from ICDAR 2013 training datasets(with 1 GPU).
    python train.py \
      --gpu_list='0' \
      --checkpoint_path=ckpt/ICDAR13/ \
      --pretrained_model_path=ckpt/ICDAR17MLT/ \
      --training_img_data_dir=data/ICDAR13/imgs/ \
      --training_gt_data_dir=data/ICDAR13/gts/
    

Test

Place some images in test_imgs/ dir and specify a trained checkpoint path to see the test result.

python test.py --test_data_path test_imgs/ --checkpoint_path [checkpoint path]

References

Owner
Masao Taketani
Deep Learning research engineer, currently working in Tokyo, Japan. An ex-boxer, who is highly motivated to train one's mind and body.
Masao Taketani
Pixel art search engine for opengameart

Pixel Art Reverse Image Search for OpenGameArt What does the final search look like? The final search with an example can be found here. It looks like

Eivind Magnus Hvidevold 92 Nov 06, 2022
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Real Time Object Recognition From your Screen Desktop . In this post, I will explain how to build a simply program to detect objects from you desktop

Ruslan Magana Vsevolodovna 2 Sep 28, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

mick.yi 107 Jan 09, 2023
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
OCR system for Arabic language that converts images of typed text to machine-encoded text.

Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l

Hussein Youssef 144 Jan 05, 2023
OCR, Object Detection, Number Plate, Real Time

README.md PrePareded anaconda env requirements.txt clova AI → deep text recognition → trained weights (ex, .pth) wpod-net weights (ex, .h5 , .json) ht

Kaven Lee 7 Dec 06, 2022
Opencv face recognition desktop application

Opencv-Face-Recognition Opencv face recognition desktop application Program developed by Gustavo Wydler Azuaga - 2021-11-19 Screenshots of the program

Gus 1 Nov 19, 2021
Computer vision applications project (Flask and OpenCV)

Computer Vision Applications Project This project is at it's initial phase. This is all about the implementation of different computer vision techniqu

Suryam Thapa 1 Jan 26, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Read-only mirror of https://gitlab.gnome.org/GNOME/ocrfeeder

================================= OCRFeeder - A Complete OCR Suite ================================= OCRFeeder is a complete Optical Character Recogn

GNOME Github Mirror 81 Dec 23, 2022
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

An Agnostic Object Detection Framework IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-q

airctic 790 Jan 05, 2023