Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

Overview

DEFT

DEFT: Detection Embeddings for Tracking

DEFT: Detection Embeddings for Tracking,
Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara
arXiv technical report (arXiv 2102.02267)

@article{Chaabane2021deft,
  title={DEFT: Detection Embeddings for Tracking},
  author={Chaabane, Mohamed and Zhang, Peter and Beveridge, Ross and O'Hara, Stephen},
  journal={arXiv preprint arXiv:2102.02267},
  year={2021}
}

Contact: [email protected]. Any questions or discussion are welcome!

Abstract

Most modern multiple object tracking (MOT) systems follow the tracking-by-detection paradigm, consisting of a detector followed by a method for associating detections into tracks. There is a long history in tracking of combining motion and appearance features to provide robustness to occlusions and other challenges, but typically this comes with the trade-off of a more complex and slower implementation. Recent successes on popular 2D tracking benchmarks indicate that top-scores can be achieved using a state-of-the-art detector and relatively simple associations relying on single-frame spatial offsets -- notably outperforming contemporary methods that leverage learned appearance features to help re-identify lost tracks. In this paper, we propose an efficient joint detection and tracking model named DEFT, or Detection Embeddings for Tracking. Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network. An LSTM is also added to capture motion constraints. DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards while having significant advantages in robustness when applied to more challenging tracking data. DEFT raises the bar on the nuScenes monocular 3D tracking challenge, more than doubling the performance of the previous top method.

Video examples on benchmarks test sets

Tracking performance

Results on MOT challenge test set

Dataset MOTA MOTP IDF1 IDS
MOT16 (Public) 61.7 78.3 60.2 768
MOT16 (Private) 68.03 78.71 66.39 925
MOT17 (Public) 60.4 78.1 59.7 2581
MOT17 (Private) 66.6 78.83 65.42 2823

The results are obtained on the MOT challenge evaluation server.

Results on 2D Vehicle Tracking on KITTI test set

Dataset MOTA MOTP MT ML IDS
KITTI 88.95 84.55 84.77 1.85 343

Tthe results are obtained on the KITTI challenge evaluation server.

Results on 3D Tracking on nuScenes test set

Dataset AMOTA MOTAR MOTA
nuScenes 17.7 48.4 15.6

Tthe results are obtained on the nuScenes challenge evaluation server.

Installation

  • Clone this repo, and run the following commands.
  • create a new conda environment and activate the environment.
git clone [email protected]:MedChaabane/DEFT.git
cd DEFT
conda create -y -n DEFT python=3.7
conda activate DEFT
  • Install PyTorch and the dependencies.
conda install -y pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
pip install -r requirements.txt  
pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
cd src/lib/model/networks/
git clone https://github.com/CharlesShang/DCNv2
cd DCNv2
./make.sh

Datsets Preparation

We use similar datasets preparation like in CenterTrack framework

MOT 2017

  • Run the dataset preprocessing script.
cd src/tools/
sh get_mot_17.sh
  • The output data structure should be:
  ${DEFT_ROOT}
  |-- data
  `-- |-- mot17
      `-- |--- train
          |   |--- MOT17-02-FRCNN
          |   |    |--- img1
          |   |    |--- gt
          |   |    |   |--- gt.txt
          |   |    |   |--- gt_train_half.txt
          |   |    |   |--- gt_val_half.txt
          |   |    |--- det
          |   |    |   |--- det.txt
          |   |    |   |--- det_train_half.txt
          |   |    |   |--- det_val_half.txt
          |   |--- ...
          |--- test
          |   |--- MOT17-01-FRCNN
          |---|--- ...
          `---| annotations
              |--- train_half.json
              |--- val_half.json
              |--- train.json
              `--- test.json

KITTI Tracking

  ${DEFT_ROOT}
  |-- data
  `-- |-- kitti_tracking
      `-- |-- data_tracking_image_2
          |   |-- training
          |   |-- |-- image_02
          |   |-- |-- |-- 0000
          |   |-- |-- |-- ...
          |-- |-- testing
          |-- label_02
          |   |-- 0000.txt
          |   |-- ...
          `-- data_tracking_calib
  • Run the dataset preprocessing script.
cd src/tools/
sh get_kitti_tracking.sh
  • The resulting data structure should look like:
  ${DEFT_ROOT}
  |-- data
  `-- |-- kitti_tracking
      `-- |-- data_tracking_image_2
          |   |-- training
          |   |   |-- image_02
          |   |   |   |-- 0000
          |   |   |   |-- ...
          |-- |-- testing
          |-- label_02
          |   |-- 0000.txt
          |   |-- ...
          |-- data_tracking_calib
          |-- label_02_val_half
          |   |-- 0000.txt
          |   |-- ...
          |-- label_02_train_half
          |   |-- 0000.txt
          |   |-- ...
          `-- annotations
              |-- tracking_train.json
              |-- tracking_test.json
              |-- tracking_train_half.json
              `-- tracking_val_half.json

nuScenes Tracking

  • Download the dataset from nuScenes website. You only need to download the "Keyframe blobs", and only need the images data. You also need to download the maps and all metadata.
  • Unzip, rename, and place the data as below. You will need to merge folders from different zip files.
 ${DEFT_ROOT}
  |-- data
  `-- |-- nuscenes
      `-- |-- v1.0-trainval
          |   |-- samples
          |   |   |-- CAM_BACK
          |   |   |   | -- xxx.jpg
          |   |   |-- CAM_BACK_LEFT
          |   |   |-- CAM_BACK_RIGHT
          |   |   |-- CAM_FRONT
          |   |   |-- CAM_FRONT_LEFT
          |   |   |-- CAM_FRONT_RIGHT
          |-- |-- maps
          `-- |-- v1.0-trainval_meta
  • Run the dataset preprocessing script.
cd src/tools/
convert_nuScenes.py

References

Please cite the corresponding References if you use the datasets.

  @article{MOT16,
    title = {{MOT}16: {A} Benchmark for Multi-Object Tracking},
    shorttitle = {MOT16},
    url = {http://arxiv.org/abs/1603.00831},
    journal = {arXiv:1603.00831 [cs]},
    author = {Milan, A. and Leal-Taix\'{e}, L. and Reid, I. and Roth, S. and Schindler, K.},
    month = mar,
    year = {2016},
    note = {arXiv: 1603.00831},
    keywords = {Computer Science - Computer Vision and Pattern Recognition}
  }


  @INPROCEEDINGS{Geiger2012CVPR,
    author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
    title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
    booktitle = {CVPR},
    year = {2012}
  }


  @inproceedings{nuscenes2019,
  title={{nuScenes}: A multimodal dataset for autonomous driving},
  author={Holger Caesar and Varun Bankiti and Alex H. Lang and Sourabh Vora and Venice Erin Liong and Qiang Xu and Anush Krishnan and Yu Pan and Giancarlo Baldan and Oscar Beijbom},
  booktitle={CVPR},
  year={2020}
  }

Training and Evaluation Experiments

Scripts for training and evaluating DEFT on MOT, KITTI and nuScenes are available in the experiments folder. The outputs videos and results (same as submission format) will be on the folders $dataset_name$_videos and $dataset_name$_results.

Acknowledgement

A large portion of code is borrowed from xingyizhou/CenterTrack, shijieS/SST and Zhongdao/Towards-Realtime-MOT, many thanks to their wonderful work!

Owner
Mohamed Chaabane
PhD Student, Computer Science @ Colorado State University with a deep interest in Deep learning, Machine Learning and Computer Vision.
Mohamed Chaabane
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022