TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

Overview
Comments
  • abs_depth_error

    abs_depth_error

    I find ABS_DEPTH_ERROR is close to 6 or even 7 during training, is this normal? Here are the training results for Epoch 5. Is it because of the slow convergence?

    avg_test_scalars: {'loss': 4.360309665948113, 'depth_loss': 6.535046514014081, 'entropy_loss': 4.360309665948113, 'abs_depth_error': 6.899323051878795, 'thres2mm_error': 0.16829867261163733, 'thres4mm_error': 0.10954744909229193, 'thres8mm_error': 0.07844322964626443, 'thres14mm_error': 0.06323695212957076, 'thres20mm_error': 0.055751020700780536, 'thres2mm_abserror': 0.597563438798779, 'thres4mm_abserror': 2.7356186663791666, 'thres8mm_abserror': 5.608324628466483, 'thres14mm_abserror': 10.510002394554125, 'thres20mm_abserror': 16.67409769420184, 'thres>20mm_abserror': 78.15814284054947}

    opened by zhang-snowy 7
  • About the fusion setting in DTU

    About the fusion setting in DTU

    Thank you for your great contribution. The script use the gipuma as the fusion method with num_consistent=5prob_threshold=0.05disp_threshold=0.25. However, it produces point cloud results with only 1/2 points compared with the point cloud results you provide in DTU, leading to a much poorer result in DTU. Is there any setting wrong in the script? Or because it does not use the dynamic fusion method described in the paper. Could you provide the dynamic fusion process in DTU?

    opened by DIVE128 5
  • Testing on TnT advanced dataset

    Testing on TnT advanced dataset

    Hi, thank you for sharing this great work!

    I'm try to test transmvsnet on tnt advanced dataset, but meet some problem. My test environment is ubuntu16.04 with cuda11.3 and pytorch 1.10.

    The first thing is that there is no cams_1 folder under tnt dataset, is it a revised version of original cams folder or you just changed the folder name?

    I just changed the folder name, then run scripts/test_tnt.sh, but I find the speed is rather slow, about 10 seconds on 1080ti for a image (1056 x 1920), is it normal?

    Finally I get the fused point cloud, but the cloud is meaningless, I checked the depth map and confidence map, all of the data are very strange, apperantly not right.

    Can you help me with these problems?

    opened by CanCanZeng 4
  • Some implement details about the paper

    Some implement details about the paper

    Firstly thanks for your paper and I'm looking forward to your open-sourced code.

    And I have some questions about your paper: (Hopefully you can reply, thanks in advance!) (1) In section 4.2, "The model is trained with Adam for 10 epochs with an initial learning rate of 0.001, which decays by a factor of 0.5 respectively after 6, 8, and 12 epochs." I'm confused about the epochs. And I also noticed that this training strategy is different from CasMVSNet. Did you try the training strategy in CasMVSNet? What's the difference? (2) In Table4(b), focal loss(what is the value of \gamma?) suppresses CE loss by 0.06. However, In Table4(e) and Table 6, we infer that the best model use CE loss(FL with \gamma=0). My question is: did you keep Focal loss \gamma unchanged in the Ablation study in Table4? If not, how \gamma changes? Could you elaborate?

    Really appreciate it!

    opened by JeffWang987 4
  • source code

    source code

    Hi, @Lxiangyue Thank you for the nice paper.

    It's been over a month since authors announced that the code will be available. May I know when the code will be released? (or whether it will not be released)

    opened by Ys-Jung77 3
  • Testing on my own dataset

    Testing on my own dataset

    Hi thanks for your interesting work. I tested your code on one of the DTU dataset (Moda). as you can see from the following image, the results are quite well. image

    but I got a very bad result, when i tried to tested on one of my dataset (see the following pic) using your pretrained model (model_dtu). Now, my question is that do you thing that the object is too complicated and different compared to DTU dataset and it is all we can get from the pretrain model without retraining it? is it possible to improve by changing the input parameters? In general, would you please share your opinion about this result? image

    opened by AliKaramiFBK 1
  • generate dense 3D point cloud

    generate dense 3D point cloud

    thanks for your greate work I just tried to do a test on DTU testing dataset I got the depth map for each view but I got a bit confised on how to generate 3D point cloud using your code would you please let me know Best

    opened by AliKaramiFBK 1
  • GPU memory consumption

    GPU memory consumption

    Hi! Thanks for your excellent work! When I tested on the DTU dataset with pretrained model, the gpu memory consumption is 4439MB, but the paper gives 3778MB.

    I do not know where the problem is.

    opened by JianfeiJ 0
  • Using my own data

    Using my own data

    If I have the intrinsic matrics and extrinsic matrics of cameras, which means I don't need to run SFM in COLMAP, how should I struct my data to train the model?

    opened by PaperDollssss 2
  • TnT dataset results

    TnT dataset results

    Thanks for the great job. I follow the instruction and upload the reconstruction result of tnt but find the F-score=60.29, and I find the point cloud sizes are a larger than the upload ones. Whether the reconstructed point cloud use the param settting of test_tnt.sh or it should be tuned manually? :smile:

    opened by CC9310 1
  • TankAndTemple Test

    TankAndTemple Test

    Hi, 我测试了TAT数据集中的Family,使用的是默认脚本test_tnt.sh,采用normal融合,最近仅得到13MB点云文件。经检查发现生成的mask文件夹中的_geo.png都是大部分区域黑色图片,从而最后得到的 final.png的大部分区域都是无效的。geometric consistency阈值分别是默认的0.01和1。不知道您这边是否有一样的问题?

    opened by lt-xiang 13
  • Why is there a big gap between the reproducing results and the paper results?

    Why is there a big gap between the reproducing results and the paper results?

    I have tried the pre-trained model you offered on DTU dataset. But the results I got are mean_acc=0.299, mean_comp=0.385, overall=0.342, and the results you presented in the paper are mean_acc=0.321, mean_comp=0.289, overall=0.305.

    I do not know where the problem is.

    opened by cainsmile 14
Releases(T&T_ply)
Owner
旷视研究院 3D 组
旷视科技(Face++)研究院 3D 组(原 SLAM 组)
旷视研究院 3D 组
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022