The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Related tags

Deep LearningVAEBM
Overview

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper)

Zhisheng Xiao·Karsten Kreis·Jan Kautz·Arash Vahdat


VAEBM trains an energy network to refine the data distribution learned by an NVAE, where the enery network and the VAE jointly define an Energy-based model. The NVAE is pretrained before training the energy network, and please refer to NVAE's implementation for more details about constructing and training NVAE.

Set up datasets

We trained on several datasets, including CIFAR10, CelebA64, LSUN Church 64 and CelebA HQ 256. For large datasets, we store the data in LMDB datasets for I/O efficiency. Check here for information regarding dataset preparation.

Training NVAE

We use the following commands on each dataset for training the NVAE backbone. To train NVAEs, please use its original codebase with commands given here.

CIFAR-10 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID --dataset cifar10 \
      --num_channels_enc 128 --num_channels_dec 128 --epochs 400 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 1 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_groups_per_scale 30 --batch_size 32 \
      --weight_decay_norm 1e-1 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-64 (8x 16-GB GPUs)

python train.py --data  $DATA_DIR/celeba64_lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 50 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-HQ-256 (8x 32-GB GPUs)

python train.py -data  $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_256 \
      --num_channels_enc 32 --num_channels_dec 32 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
      --num_postprocess_blocks 1 --weight_decay_norm 1e-2 --num_x_bits 5 --num_latent_scales 5 --num_groups_per_scale 4 \
      --num_nf 2 --batch_size 8 --fast_adamax  --num_mixture_dec 1 \
      --weight_decay_norm_anneal  --weight_decay_norm_init 1e1 --learning_rate 6e-3 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

LSUN Churches Outdoor 64 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/LSUN/ --root $CHECKPOINT_DIR --save $EXPR_ID --dataset lsun_church_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 60 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

Training VAEBM

We use the following commands on each dataset for training VAEBM. Note that you need to train the NVAE on corresponding dataset before running the training command here. After training the NVAE, pass the path of the checkpoint to the --checkpoint argument.

Note that the training of VAEBM will eventually explode (See Appendix E of our paper), and therefore it is important to save checkpoint regularly. After the training explodes, stop running the code and use the last few saved checkpoints for testing.

CIFAR-10

We train VAEBM on CIFAR-10 using one 32-GB V100 GPU.

python train_VAEBM.py  --checkpoint ./checkpoints/cifar10/checkpoint.pt --experiment cifar10_exp1
--dataset cifar10 --im_size 32 --data ./data/cifar10 --num_steps 10 
--wd 3e-5 --step_size 8e-5 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 --max_p 0.6 
--anneal_step 5000. --batch_size 32 --n_channel 128

CelebA 64

We train VAEBM on CelebA 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --experiment celeba64_exp1 --dataset celeba_64 
--im_size 64 --lr 5e-5 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 5e-6 --total_iter 30000 
--alpha_s 0.2 

LSUN Church 64

We train VAEBM on LSUN Church 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --experiment lsunchurch_exp1 --dataset lsun_church 
--im_size 64 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 4e-6 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 
--use_buffer --max_p 0.6 --anneal_step 5000

CelebA HQ 256

We train VAEBM on CelebA HQ 256 using four 32-GB V100 GPUs.

python train_VAEBM_distributed.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --experiment celeba256_exp1 --dataset celeba_256
--num_process_per_node 4 --im_size 256 --batch_size 4 --n_channel 64 --num_steps 6 --use_mu_cd --wd 3e-5 --step_size 3e-6 
--total_iter 9000 --alpha_s 0.3 --lr 4e-5 --use_buffer --max_p 0.6 --anneal_step 3000 --buffer_size 2000

Sampling from VAEBM

To generate samples from VAEBM after training, run sample_VAEBM.py, and it will generate 50000 test images in your given path. When sampling, we typically use longer Langvin dynamics than training for better sample quality, see Appendix E of the paper for the step sizes and number of steps we use to obtain test samples for each dataset. Other parameters that ensure successfully loading the VAE and energy network are the same as in the training codes.

For example, the script used to sample CIFAR-10 is

python sample_VAEBM.py --checkpoint ./checkpoints/cifar_10/checkpoint.pt --ebm_checkpoint ./saved_models/cifar_10/cifar_exp1/EBM.pth 
--dataset cifar10 --im_size 32 --batch_size 40 --n_channel 128 --num_steps 16 --step_size 8e-5 

For CelebA 64,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_64/celeba64_exp1/EBM.pth 
--dataset celeba_64 --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 5e-6 

For LSUN Church 64,

python sample_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --ebm_checkpoint ./saved_models/lsun_chruch/lsunchurch_exp1/EBM.pth 
--dataset lsun_church --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 4e-6 

For CelebA HQ 256,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_256/celeba256_exp1/EBM.pth 
--dataset celeba_256 --im_size 256 --batch_size 10 --n_channel 64 --num_steps 24 --step_size 3e-6 

Evaluation

After sampling, use the Tensorflow or PyTorch implementation to compute the FID scores. For example, when using the Tensorflow implementation, you can obtain the FID score by saving the training images in /path/to/training_images and running the script:

python fid.py /path/to/training_images /path/to/sampled_images

For CIFAR-10, the training statistics can be downloaded from here, and the FID score can be computed by running

python fid.py /path/to/sampled_images /path/to/precalculated_stats.npz

For the Inception Score, save samples in a single numpy array with pixel values in range [0, 255] and simply run

python ./thirdparty/inception_score.py --sample_dir /path/to/sampled_images

where the code for computing Inception Score is adapted from here.

License

Please check the LICENSE file. VAEBM may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Bibtex

Cite our paper using the following bibtex item:

@inproceedings{
xiao2021vaebm,
title={VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models},
author={Zhisheng Xiao and Karsten Kreis and Jan Kautz and Arash Vahdat},
booktitle={International Conference on Learning Representations},
year={2021}
}
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022