document image degradation

Overview

ocrodeg

The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OCR applications.

The following illustrates the kinds of degradations available from ocrodeg.

%pylab inline
Populating the interactive namespace from numpy and matplotlib
rc("image", cmap="gray", interpolation="bicubic")
figsize(10, 10)
import scipy.ndimage as ndi
import ocrodeg

image = imread("testdata/W1P0.png")
imshow(image)
<matplotlib.image.AxesImage at 0x7fabcc7ab390>

png

PAGE ROTATION

This is just for illustration; for large page rotations, you can just use ndimage.

for i, angle in enumerate([0, 90, 180, 270]):
    subplot(2, 2, i+1)
    imshow(ndi.rotate(image, angle))

png

RANDOM GEOMETRIC TRANSFORMATIONS

random_transform generates random transformation parameters that work reasonably well for document image degradation. You can override the ranges used by each of these parameters by keyword arguments.

ocrodeg.random_transform()
{'angle': -0.016783842893063807,
 'aniso': 0.805280370671964,
 'scale': 0.9709145529604223,
 'translation': (0.014319657859164045, 0.03676897986267606)}

Here are four samples generated by random transforms.

for i in xrange(4):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, **ocrodeg.random_transform()))

png

You can use transform_image directly with the different parameters to get a feel for the ranges and effects of these parameters.

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180))

png

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180)[1000:1500, 750:1250])

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso))

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso)[1000:1500, 750:1250])

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, scale=scale))

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    h, w = image.shape
    imshow(ocrodeg.transform_image(image, scale=scale)[h//2-200:h//2+200, w//3-200:w//3+200])

png

RANDOM DISTORTIONS

Pages often also have a small degree of warping. This can be modeled by random distortions. Very small and noisy random distortions also model ink spread, while large 1D random distortions model paper curl.

for i, sigma in enumerate([1.0, 2.0, 5.0, 20.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.bounded_gaussian_noise(image.shape, sigma, 5.0)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[h//2-200:h//2+200, w//3-200:w//3+200])

png

RULED SURFACE DISTORTIONS

for i, mag in enumerate([5.0, 20.0, 100.0, 200.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.noise_distort1d(image.shape, magnitude=mag)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[:1500])

png

BLUR, THRESHOLDING, NOISE

There are a range of utilities for modeling imaging artifacts: blurring, noise, inkspread.

patch = image[1900:2156, 1000:1256]
imshow(patch)
<matplotlib.image.AxesImage at 0x7fabc88c7e10>

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    thresholded = 1.0*(blurred>0.5)
    imshow(thresholded)

png

reload(ocrodeg)
for i, s in enumerate([0.0, 1.0, 2.0, 4.0]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0.0, 0.1, 0.2, 0.3]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, 2.0, noise=s)
    imshow(blurred)

png

MULTISCALE NOISE

reload(ocrodeg)
for i in range(4):
    noisy = ocrodeg.make_multiscale_noise_uniform((512, 512))
    subplot(2, 2, i+1); imshow(noisy, vmin=0, vmax=1)

png

RANDOM BLOBS

for i, s in enumerate([2, 5, 10, 20]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.random_blobs(patch.shape, 3e-4, s))

png

reload(ocrodeg)
blotched = ocrodeg.random_blotches(patch, 3e-4, 1e-4)
#blotched = minimum(maximum(patch, ocrodeg.random_blobs(patch.shape, 30, 10)), 1-ocrodeg.random_blobs(patch.shape, 15, 8))
subplot(121); imshow(patch); subplot(122); imshow(blotched)
<matplotlib.image.AxesImage at 0x7fabc8a35490>

png

FIBROUS NOISE

imshow(ocrodeg.make_fibrous_image((256, 256), 700, 300, 0.01))
<matplotlib.image.AxesImage at 0x7fabc8852450>

png

FOREGROUND / BACKGROUND SELECTION

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_multiscale(patch))
<matplotlib.image.AxesImage at 0x7fabc8676d90>

png

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_fibrous(patch))
<matplotlib.image.AxesImage at 0x7fabc8d1b250>

png

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
Python tool that takes the OCR.space JSON output as input and draws a text overlay on top of the image.

OCR.space OCR Result Checker = Draw OCR overlay on top of image Python tool that takes the OCR.space JSON output as input, and draws an overlay on to

a9t9 4 Oct 18, 2022
⛓ marc is a small, but flexible Markov chain generator

About marc (markov chain) is a small, but flexible Markov chain generator. Usage marc is easy to use. To build a MarkovChain pass the object a sequenc

Max Humber 65 Oct 27, 2022
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
OpenCV-Erlang/Elixir bindings

evision [WIP] : OS : arch Build Status Ubuntu 20.04 arm64 Ubuntu 20.04 armv7 Ubuntu 20.04 s390x Ubuntu 20.04 ppc64le Ubuntu 20.04 x86_64 macOS 11 Big

Cocoa 194 Jan 05, 2023
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.

Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump

Jason Y. Zhang 16 Oct 10, 2022
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
Scan the MRZ code of a passport and extract the firstname, lastname, passport number, nationality, date of birth, expiration date and personal numer.

PassportScanner Works with 2 and 3 line identity documents. What is this With PassportScanner you can use your camera to scan the MRZ code of a passpo

Edwin Vermeer 441 Dec 24, 2022
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
Some bits of javascript to transcribe scanned pages using PageXML

nashi (nasḫī) Some bits of javascript to transcribe scanned pages using PageXML. Both ltr and rtl languages are supported. Try it! But wait, there's m

Andreas Büttner 15 Nov 09, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022
Open Source Computer Vision Library

OpenCV: Open Source Computer Vision Library Resources Homepage: https://opencv.org Courses: https://opencv.org/courses Docs: https://docs.opencv.org/m

OpenCV 65.7k Jan 03, 2023