Project 4 Cloud DevOps Nanodegree

Overview

CircleCI

Project Overview

In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API.

You are given a pre-trained, sklearn model that has been trained to predict housing prices in Boston according to several features, such as average rooms in a home and data about highway access, teacher-to-pupil ratios, and so on. You can read more about the data, which was initially taken from Kaggle, on the data source site. This project tests your ability to operationalize a Python flask app—in a provided file, app.py—that serves out predictions (inference) about housing prices through API calls. This project could be extended to any pre-trained machine learning model, such as those for image recognition and data labeling.

Project Tasks

Your project goal is to operationalize this working, machine learning microservice using kubernetes, which is an open-source system for automating the management of containerized applications. In this project you will:

  • Test your project code using linting
  • Complete a Dockerfile to containerize this application
  • Deploy your containerized application using Docker and make a prediction
  • Improve the log statements in the source code for this application
  • Configure Kubernetes and create a Kubernetes cluster
  • Deploy a container using Kubernetes and make a prediction
  • Upload a complete Github repo with CircleCI to indicate that your code has been tested

You can find a detailed project rubric, here.

The final implementation of the project will showcase your abilities to operationalize production microservices.


Setup the Environment

  • Create a virtualenv with Python 3.7 and activate it. Refer to this link for help on specifying the Python version in the virtualenv.
python3 -m pip install --user virtualenv
# You should have Python 3.7 available in your host. 
# Check the Python path using `which python3`
# Use a command similar to this one:
python3 -m virtualenv --python=<path-to-Python3.7> .devops
source .devops/bin/activate
  • Run make install to install the necessary dependencies

Running app.py

  1. Standalone: python app.py
  2. Run in Docker: ./run_docker.sh
  3. Run in Kubernetes: ./run_kubernetes.sh

Kubernetes Steps

  • Setup and Configure Docker locally
  • Setup and Configure Kubernetes locally
  • Create Flask app in Container
  • Run via kubectl Complete the Dockerfile Specify a working directory. Copy the app.py source code to that directory Install any dependencies in requirements.txt (do not delete the commented # hadolint ignore statement). Expose a port when the container is created; port 80 is standard. Specify that the app runs at container launch.

python3 -m venv ~/.devops source ~/.devops/bin/activate $ make lint

Run a Container & Make a Prediction Build the docker image from the Dockerfile; it is recommended that you use an optional --tag parameter as described in the build documentation. List the created docker images (for logging purposes). Run the containerized Flask app; publish the container’s port (80) to a host port (8080). Run the container using the run_docker.sh script created before following the steps above: $ . ./run_docker.sh After running the container we can able to run the prediction using the make_prediction.sh script:

$ . ./make_prediction.sh

Improve Logging & Save Output Add a prediction log statement Run the container and make a prediction to check the logs $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a7d374ad73a6 api "/bin/bash" 36 minutes ago Exited (0) 28 minutes ago exciting_visvesvaraya 89fd55581a44 api "make run-app" 44 minutes ago Exited (2) 44 minutes ago brave_poitras f0b0ece5a9b5 api "make run-app" 46 minutes ago Exited (2) 46 minutes ago elated_brahmagupta a6fcd4749e44 api "make run-app" 48 minutes ago Exited (2) 48 minutes ago dreamy_agnesi

Upload the Docker Image Create a Docker Hub account Built the docker container with this command docker build --tag=<your_tag> . (Don't forget the tag name) Define a dockerpath which is <docker_hub_username>/<project_name> Authenticate and tag image Push your docker image to the dockerpath After complete all steps run the upload using the upload_docker.sh script:

$ . ./upload_docker.sh

Configure Kubernetes to Run Locally Install Kubernetes Install Minikube

Deploy with Kubernetes and Save Output Logs Define a dockerpath which will be “/path”, this should be the same name as your uploaded repository (the same as in upload_docker.sh) Run the docker container with kubectl; you’ll have to specify the container and the port List the kubernetes pods Forward the container port to a host port, using the same ports as before

After complete all steps run the kubernetes using run_kubernetes.sh script:

$ . ./run_kubernetes.sh After running the kubernete make a prediction using the make_prediction.sh script as we do in the second task.

Delete Cluster minikube delete

CircleCI Integration To create the file and folder on GitHub, click the Create new file button on the repo page and type .circleci/config.yml. You should now have in front of you a blank config.yml file in a .circleci folder.

Then you can paste the text from this yaml file into your file, and commit the change to your repository.

It may help to reference this CircleCI blog post on Github integration.

Dockerized iCloud drive

iCloud-drive-docker is a simple iCloud drive client in Docker environment. It uses pyiCloud python library to interact with iCloud

Mandar Patil 376 Jan 01, 2023
🐳 Docker templates for various languages.

Docker Deployment Templates One Stop repository for Docker Compose and Docker Templates for Deployment. Features Python (FastAPI, Flask) Screenshots D

CodeChef-VIT 6 Aug 28, 2022
Hubble - Network, Service & Security Observability for Kubernetes using eBPF

Network, Service & Security Observability for Kubernetes What is Hubble? Getting Started Features Service Dependency Graph Metrics & Monitoring Flow V

Cilium 2.4k Jan 04, 2023
Containerize a python web application

containerize a python web application introduction this document is part of GDSC at the university of bahrain you don't need to follow along, fell fre

abdullah mosibah 1 Oct 19, 2021
docker-compose工程部署时的辅助脚本

okta-cmd Introduction docker-compose 辅助脚本

完美风暴666 4 Dec 09, 2021
A lobby boy will create a VPS server when you need one, and destroy it after using it.

Lobbyboy What is a lobby boy? A lobby boy is completely invisible, yet always in sight. A lobby boy remembers what people hate. A lobby boy anticipate

226 Dec 29, 2022
Cobbler is a versatile Linux deployment server

Cobbler Cobbler is a Linux installation server that allows for rapid setup of network installation environments. It glues together and automates many

Cobbler 2.4k Dec 24, 2022
Let's learn how to build, release and operate your containerized applications to Amazon ECS and AWS Fargate using AWS Copilot.

🚀 Welcome to AWS Copilot Workshop In this workshop, you'll learn how to build, release and operate your containerised applications to Amazon ECS and

Donnie Prakoso 15 Jul 14, 2022
framework providing automatic constructions of vulnerable infrastructures

中文 | English 1 Introduction Metarget = meta- + target, a framework providing automatic constructions of vulnerable infrastructures, used to deploy sim

rambolized 685 Dec 28, 2022
Learning and experimenting with Kubernetes

Kubernetes Experiments This repository contains code that I'm using to learn and experiment with Kubernetes. 1. Environment setup minikube kubectl doc

Richard To 10 Dec 02, 2022
Organizing ssh servers in one shell.

NeZha (哪吒) NeZha is a famous chinese deity who can have three heads and six arms if he wants. And my NeZha tool is hoping to bring developer such mult

Zilin Zhu 8 Dec 20, 2021
IP address management (IPAM) and data center infrastructure management (DCIM) tool.

NetBox is an IP address management (IPAM) and data center infrastructure management (DCIM) tool. Initially conceived by the network engineering team a

NetBox Community 11.8k Jan 07, 2023
A system for managing CI data for Mozilla projects

Treeherder Description Treeherder is a reporting dashboard for Mozilla checkins. It allows users to see the results of automatic builds and their resp

Mozilla 235 Dec 22, 2022
A tool to convert AWS EC2 instances back and forth between On-Demand and Spot billing models.

ec2-spot-converter This tool converts existing AWS EC2 instances back and forth between On-Demand and 'persistent' Spot billing models while preservin

jcjorel 152 Dec 29, 2022
Remote Desktop Protocol in Twisted Python

RDPY Remote Desktop Protocol in twisted python. RDPY is a pure Python implementation of the Microsoft RDP (Remote Desktop Protocol) protocol (client a

Sylvain Peyrefitte 1.6k Dec 30, 2022
Kube kombu - Running kombu consumers with support of liveness probe for kubernetes

Setup and Running Kombu consumers Steps: Install python 3.9 or greater on your s

Anmol Porwal 5 Dec 10, 2022
Nagios status monitor for your desktop.

Nagstamon Nagstamon is a status monitor for the desktop. It connects to multiple Nagios, Icinga, Opsview, Centreon, Op5 Monitor/Ninja, Checkmk Multisi

Henri Wahl 361 Jan 05, 2023
Ansible Collection: A collection of Ansible Modules and Lookup Plugins (MLP) from Linuxfabrik.

ansible_mlp An Ansible collection of Ansible Modules and Lookup Plugins (MLP) from Linuxfabrik. Ansible Bitwarden Item Lookup Plugin Returns a passwor

Linuxfabrik 2 Feb 07, 2022
Python utility function to communicate with a subprocess using iterables: for when data is too big to fit in memory and has to be streamed

iterable-subprocess Python utility function to communicate with a subprocess using iterables: for when data is too big to fit in memory and has to be

Department for International Trade 5 Jul 10, 2022
Define and run multi-container applications with Docker

Docker Compose Docker Compose is a tool for running multi-container applications on Docker defined using the Compose file format. A Compose file is us

Docker 28.2k Jan 08, 2023