SeMask: Semantically Masked Transformers for Semantic Segmentation.

Overview

SeMask: Semantically Masked Transformers

Framework: PyTorch

Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi

This repo contains the code for our paper SeMask: Semantically Masked Transformers for Semantic Segmentation.

semask

Contents

  1. Results
  2. Setup Instructions
  3. Citing SeMask

1. Results

Note: † denotes the backbones were pretrained on ImageNet-22k and 384x384 resolution images.

ADE20K

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 42.11 43.16 35M config TBD
SeMask-S FPN SeMask Swin-S 512x512 45.92 47.63 56M config TBD
SeMask-B FPN SeMask Swin-B 512x512 49.35 50.98 96M config TBD
SeMask-L FPN SeMask Swin-L 640x640 51.89 53.52 211M config TBD
SeMask-L MaskFormer SeMask Swin-L 640x640 54.75 56.15 219M config TBD
SeMask-L Mask2Former SeMask Swin-L 640x640 56.41 57.52 222M config TBD
SeMask-L Mask2Former FAPN SeMask Swin-L 640x640 56.68 58.00 227M config TBD
SeMask-L Mask2Former MSFAPN SeMask Swin-L 640x640 56.54 58.22 224M config TBD

Cityscapes

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 768x768 74.92 76.56 34M config TBD
SeMask-S FPN SeMask Swin-S 768x768 77.13 79.14 56M config TBD
SeMask-B FPN SeMask Swin-B 768x768 77.70 79.73 96M config TBD
SeMask-L FPN SeMask Swin-L 768x768 78.53 80.39 211M config TBD
SeMask-L Mask2Former SeMask Swin-L 512x1024 83.97 84.98 222M config TBD

COCO-Stuff 10k

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 37.53 38.88 35M config TBD
SeMask-S FPN SeMask Swin-S 512x512 40.72 42.27 56M config TBD
SeMask-B FPN SeMask Swin-B 512x512 44.63 46.30 96M config TBD
SeMask-L FPN SeMask Swin-L 640x640 47.47 48.54 211M config TBD

demo

2. Setup Instructions

We provide the codebase with SeMask incorporated into various models. Please check the setup instructions inside the corresponding folders:

3. Citing SeMask

@article{jain2022semask,
  title={SeMask: Semantically Masking Transformer Backbones for Effective Semantic Segmentation},
  author={Jitesh Jain and Anukriti Singh and Nikita Orlov and Zilong Huang and Jiachen Li and Steven Walton and Humphrey Shi},
  journal={arXiv preprint arXiv:...},
  year={2022}
}

Acknowledgements

Code is based heavily on the following repositories: Swin-Transformer-Semantic-Segmentation, Mask2Former, MaskFormer and FaPN-full.

Owner
Picsart AI Research (PAIR)
Picsart AI Research (PAIR)
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023