PyTorch implementation of SQN based on CloserLook3D's encoder

Overview

SQN_pytorch

This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, check our SQN_tensorflow repo.

Caution: currently, this repo does not achieve a satisfactory result as the SQN paper reports. For performance details, check performance section.

The repo is still under development, with the aim of reaching the level of performance reported in the SQN paper.(Note: our SQN_tensorflow repo has slightly higher performance than this pytorch repo.)

Please open an issue, if you have any comments and suggestions for improving the model performance.

TODOs

  • implement the training strategy mentioned in the Appendix of the paper.
  • ablation study
  • benchmark weak supervision

Install python packages

The latest codes are tested on two Ubuntu settings:

  • Ubuntu 18.04, Nvidia 1080, CUDA 10.1, PyTorch 1.4 and Python 3.6
  • Ubuntu 18.04, Nvidia 3090, CUDA 11.3, PyTorch 1.4 and Python 3.6

For details setting up the development environment, check CloserLook3D Pytorch version. To facilitate settings, below I also provide my own bash script( install.sh ) to create a conda environment from scratch for this repo. (You may need tailor this script according to your own system)

#!/bin/bash
ENV_NAME='closerlook'
conda create –n $ENV_NAME python=3.6.10 -y
source activate $ENV_NAME
conda install -c anaconda pillow=6.2 -y
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch -y
conda install -c conda-forge opencv -y
pip3 install termcolor tensorboard h5py easydict

Datasets

Take S3DIS as an example.

Scene Segmentation on S3DIS

You can download the S3DIS dataset from here (4.8 GB). You only need to download the file named Stanford3dDataset_v1.2.zip, unzip and move (or link) it to data/S3DIS/Stanford3dDataset_v1.2. (same as the CloserLook3D repo setting.)

The file structure should look like:

<root>
├── cfgs
│   └── s3dis
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           └── Area_6
├── init.sh
├── datasets
├── function
├── models
├── ops
└── utils

run prepare-s3dis-sqn.sh to preprocess the S3DIS dataset. This script will generate a processed folder with the below structure with five types of data, including: raw, sub-sampled point clouds for each area, KDtrees for each sub-sampled area, projection indices for each raw point over the sub-sampled area and weak labels for raw and sub-sampled point clouds (involving different weak proportion of the dataset, e.g., 0.1, 0.01, 0.001, etc.. Details check datasets/S3DIS_sqn.py and my summary notes in this file.

The processed folder is organized as follows:

<root>
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           ├── Area_6
│           └── processed
│             ├── weak_label_0.01
│             ├── weak_label_1.0
│             ├── Area_1_0.040_sub.pkl
│             ├── Area_1.pkl
│             ├── ...(many other pkl files)

Compile custom CUDA operators

sh init.sh

Run

use the run-sqn.sh script for training or evaluation.

The core training script is as follows:

python -m torch.distributed.launch \
--master_port 1234567 \
--nproc_per_node ${num_gpu} \
function/train_s3dis_dist_sqn.py \
--dataset_name ${dataset_name} \
--cfg cfgs/${dataset_name}/pospool_xyz_avg_sqn.yaml \
--num_points ${num_points} \
--batch_size ${batch_size} \
--val_freq 20 \
--weak_ratio ${weak_ratio}

The core evaluation script is as follows:

python -m torch.distributed.launch \
--master_port 12346 \
--nproc_per_node 1 \
function/evaluate_s3dis_dist_sqn.py \
--cfg cfgs/s3dis/pospool_xyz_avg_sqn.yaml \
--load_path <checkpoint>
[--log_dir <log directory>]

Performance on S3DIS

The experiments are still in progress due to my slow GPU.

Model Weak ratio Performance (mIoU, %) Description
Official RandLA-Net 100% 63.0 Fully supervised method trained with full labels.
Official SQN 1/1000 61.4 This official SQN uses additional techniques to improve the performance, our replicaed SQN currently does not investigate this yet. Official SQN does not provide results of S3DIS under the weak ratio of 1/10 and 1/100
Our replicated SQN 1/10 51.4 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/100 25.22 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/1000 21.10 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.

Acknowledgements

Our pytorch codes borrowed a lot from CloserLook3D and the custom trilinear interoplation CUDA ops are modified from erikwijmans's Pointnet2_PyTorch.

Citation

If you find our work useful in your research, please consider citing:

@article{pytorchpointnet++,
    Author = {YIN, Chao},
    Title = {SQN Pytorch implementation based on CloserLook3D's encoder},
    Journal = {https://github.com/PointCloudYC/SQN_pytorch},
    Year = {2021}
   }

@article{hu2021sqn,
    title={SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels},
    author={Hu, Qingyong and Yang, Bo and Fang, Guangchi and Guo, Yulan and Leonardis, Ales and Trigoni, Niki and Markham, Andrew},
    journal={arXiv preprint arXiv:2104.04891},
    year={2021}
  }
Owner
PointCloudYC
Ph.D candidate at HKUST, focus on point cloud processing and deep learning.
PointCloudYC
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023