CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

Overview

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI-Context-Aware Interpretable Point-of-Interest Recommendation Framework

This repository contains a framework for Recommender Systems (RecSys), allowing users to choose a dataset on a model based on their demand.

CAPRI Overview

CAPRI

☑️ Prerequisites

You will need below libraries to be installed before running the application:

  • Python >= 3.4
  • NumPy >= 1.19
  • SciPy >= 1.6
  • PyInquirer >= 1.0.3

For a simple solution, you can simply run the below command in the root directory:

pip install -r prerequisites.txt

🚀 Launch the Application

Start the project by running the main.py in the root directory. With this, the application settings are loaded from the config.py file. You can select from different options to choose a model (e.g. GeoSoCa, available on the Models folder) and a dataset (e.g. Yelp, available on the Data folder) to be processed by the selected model, along with a fusion operator (e.g. prodect or sum). The system starts processing data using the selected model and provides some evaluations on it as well. The final results will be added to the Generated folder, withe the name template representing which model has been emplyed on which dataset and with what item selection rate.

🧩 Contribution Guide

Contribution to the project can be done through various approaches:

Adding a new dataset

All datasets can be found in ./Data/ directory. In order to add a new dataset, you should:

  • Modify the config.py file and add a record to the datasets dictionary. The key of the item should be the dataset's name (CapitalCase) and the value is an array of strings containing the dataset scopes (all CapitalCase). For instance
"DatasetName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Data/ directory with the exact same name selected in the previous step. This way, your configs are attached to the dataset. In the created folder, add files of the dataset (preferably camelCase, e.g. socialRelations). Note that for each of these files, a variable with the exact same name will be automatically generated and fed to the models section. You can find a sample for the dataset sturcture here:
+ Data/
	+ Dataset1
		+ datasetFile1
		+ datasetFile2
		+ datasetFile3
	+ Dataset2
		+ datasetFile4
		+ datasetFile5
		+ datasetFile6

Adding a new model

Models can be found in ./Models/ directory. In order to add a new model, you should:

  • Modify the config.py file and add a record to the models dictionary. The key of the item should be the model's name (CapitalCase) and the value is an array of strings containing the scopes that mode covers (all CapitalCase). For instance
"ModelName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Models/ directory with the exact same name selected in the previous step. This way, your configs are attached to the model. In the created folder, add files of the model (preferably camelCase, e.g. socialRelations). Models contain a main.py file that holds the contents of the model. The file main.py contains a class with the exact name of the model and the letter 'Main' (e.g. ModelNameMain). This class should contain a main function with two argument: (i) datasetFiles dictionary, (ii) the parameters of the selected model (including top-K items for evaluation, sparsity ratio, restricted list for computation, and dataset name). For a better description, check the code sample below:
import numpy as np
...

class NewModelMain:
	def main(datasetFiles, parameters):
		print('Other codes goes here')

There is a utils.py file in the ./Models/ directory that keeps the utilities that can be used in all models. If you are thinking about a customized utilities with other functions, you can add an extendedUtils.py file in the model's directory. Also, a /lib/ directory is considered in each model folders that contains the libraries used in the model. You can find a sample for the dataset sturcture here:

+ Models/
	+ Model1/
		+ lib/
		+ __init__.py
		+ main.py
		+ extendedUtils.py
	+ utils.py
	+ __init__.py

Note: do not forget to add a init.py file to the directories you make.

Adding a new evaluation

You can simply add the evaluations to the ./Evaluations/metrics.py file.

⚠️ TODOs

  • Add a proper caching policy to check the Generated directory
  • Unifying saveModel and loadModel in utils.py
  • Add the impact of fusions when running models
  • Add a logging functionality
Owner
RecSys Lab
The RecSys Lab is a collaboration to investigate a new view of analysis in the domain of recommendation.
RecSys Lab
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022