A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

Overview

yolov5-fire-smoke-detect-python

A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

You can see video play in BILIBILI, or YOUTUBE.

If you have problem in this project, you can see this artical.

And If you want play it in jetson nano or jetson xavier , you can see this project yolov5-fire-smoke-detect

Dataset

You can get the dataset from this aistudio url. And the fire & smoke detect project pdpd version can be found in this url. It is an amazing project.

Data

This pro needs dataset like

../datasets/coco128/images/im0.jpg  #image
../datasets/coco128/labels/im0.txt  #label

Download the dataset and unzip it.

unzip annnotations.zip
unzip images.zip

You can get this.

 ├── dataset
	├── annotations
  │   ├── fire_000001.xml
  │   ├── fire_000002.xml
  │   ├── fire_000003.xml
  │   |   ...
  ├── images
  │   ├── fire_000001.jpg
  │   ├── fire_000003.jpg
  │   ├── fire_000003.jpg
  │   |   ...
  ├── label_list.txt
  ├── train.txt
  └── valid.txt

You should turn xml files to txt files. You also can see this. Open script/sw2yolo.py, Change save_path to your own save path,root as your data path, and list_file as val_list.txt and train_list.txt path.

list_file = "./val_list.txt"
xmls_path,imgs_path = get_file_path(list_file)

# 将train_list中的xml 转成 txt, img放到img中
save_path = './data/yolodata/fire/cocolike/val/'
root = "./data/yolodata/fire/"
train_img_root = root 

Then you need script/yolov5-split-label-img.py to split img and txt file.

mkdir images
mkdir lables
mv ./train/images/* ./images/train
mv ./train/labels/* ./labels/train
mv ./val/iamges/* ./images/val
mv ./val/lables/* ./lables/val

Finally You can get this.

 ├── cocolike
	├── lables
  │   ├── val 
  │       ├── fire_000001.xml
  |       ├──   ...
  │   ├── train
  │       ├── fire_000002.xml
  |       ├──   ...
  │   
  ├── images
  │   ├── val 
  │       ├── fire_000001.jpg
  |       ├──   ...
  │   ├── train
  │       ├── fire_000003.jpg
  |       ├──   ...
  ├── label_list.txt
  ├── train.txt
  └── valid.txt

Datafile

{porject}/yolov5/data/ add your own yaml files like fire.yaml.

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128  downloads here


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /home/data/tbw_data/face-dataset/yolodata/fire/cocolike/  # dataset root dir
train: images/train  # train images (relative to 'path') 128 images
val: images/val  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
nc: 2  # number of classes
names: ['fire','smoke']  # class names

Train

Change {project}/train.py's data path as your own data yaml path. Change batch-size as a suitable num. Change device if you have 2 or more gpu devices. Then

python train.py

Test

Use detect.py to test.

python detect.py --source ./data//yolodata/fire/cocolike/images/val/ --weights ./runs/train/exp/weights/best.pt

You can see {project}/runs/detect/ has png results.

Owner
Working in human-computer-interaction, gaze-estimation and class education analysis. CSDN:https://blog.csdn.net/weixin_42264234
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022