Bianace Prediction Pytorch Model

Overview

Bianace Prediction Pytorch Model

Main Results

ETHUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 2.74%
1d (Model) 125.05%
4h (Human) 36.86%
4h (Model) 300.37%
1h (Human) 37.55%
1h (Model) 393.66%

BTCUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 3.11%
1d (Model) 30.08%
4h (Human) 18.30%
4h (Model) 30.67%
1h (Human) 19.79%
1h (Model) 32.07%

Getting started

Environment

  • Test OS: Ubuntu 16.04 LTS
  • Python version: 3.8

Preparation

  • Create folders.
mkdir images
mkdir checkpoints
  • Please run pip install –r requirements.txt to install the needed libraries.

Dataset

Binance Public Data

  • Clone the repo.
  • Follow the instruction to download required data.
# ETHUSDT
python download-kline.py -s ETHUSDT -startDate 2017-08-01 -endDate 2021-12-01

# BTCUSDT
python download-kline.py -s BTCUSDT -startDate 2017-08-01 -endDate 2021-12-01
  • It will download the required data as below. Unzip the zip files under the 1h, 4h and 1d directories.
binance_prediction_pytorch
    `-- binance-public-data
        `-- data
            `-- data
                `-- spot
                    |-- daily
                    `-- monthly
                        `-- klines
                            |-- ETHUSDT
                            `-- BTCUSDT
  • Then soft link the data directory to the repo root as below.
binance_prediction_pytorch
    |-- binance-public-data
    `-- data
        `-- spot
            |-- daily
            `-- monthly
                `-- klines
                    |-- ETHUSDT
                    `-- BTCUSDT

Experiments

Training

  • Run training and evaluation on ETHUSDT. It will store the checkpoints under checkpoints with ticker name and time interval if don't specify the checkpoint path with --ckpt.
# 1d
./run.sh ETHUSDT 1d

# 4h
./run.sh ETHUSDT 4h --sell_rate 0.03

# 1h
./run.sh ETHUSDT 1h --sell_rate 0.03
  • Run training and evaluation on BTCUSDT
# 1d
./run.sh BTCUSDT 1d

# 4h
./run.sh BTCUSDT 4h --sell_rate 0.03

# 1h
./run.sh BTCUSDT 1h --sell_rate 0.03

Inference

  • Specify the checkpoint path with eval mode to only do the inference.
./run.sh ETHUSDT 1h --sell_rate 0.03 --ckpt ${YOUR_CHECKPOINT_PATH} --eval
Owner
RoyYang
M.S. student @ VSLab
RoyYang
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022