Final Project Bootcamp Zero

Overview

The Quest (Pygame)

Descripción

Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding.

El juego consiste en la búsqueda de nuevos planetas para colonizarlos. Durante el transcurso del viaje aparecerán desafíos, ya sean naves enemigas u oleadas de meteoritos. Cada nivel constará de 1 minuto más de viaje y cada desafío aumentará en número y velocidad. El jugador dispondrá de munición de balas y carga de misiles para afrontar los desafíos durante el viaje. Propulsor que reducirá el tiempo de viaje a la mitad aunque no podrá moverme mientras esté activo. Y una barra de salud más 3 vidas extra. Si consume todas las vidas perderá la partida.

Informacion del repositorio

Realizado por:

Nombre Email
Sergio Fuentes (Seven) [email protected]

En el transcurso de las 3 semanas para realizar el proyecto final del curso he completado The Quest v1.0. Utilicé varias herramientas objeto prediseñados para una funcionalidad mejorada y eficiente durante el desarrollo del juego. De los más útiles a destacar fue el objeto Sprite sheet que me facilitó la descarga de cualquier imagen y la creación de instancias heredando todas sus características como objeto base. Un objeto con 4 tipos diferentes de temporizadores múltiples. Un algoritmo muy reducido que me permitía moverme entre las escenas del juego en cualquier sentido. Un objeto que controla consultas CRUD con SQLite registrando los datos de cada jugador en todo momento. También creé botones, barras, tablero y teclado entre otros para facilitar y mejorar la interactividad del usuario. Y múltiples ideas que preferí mostrar y sorprender durante la experiencia del juego.

Para abrir el juego, hay que lanzar run.pyw, teniendo previamente descargados todos los archivos del repositorio.

Estructura del repositorio

  • Assets: Carpeta que contiene todos los activos del juego.

    • Audio: Contiene la música de cada escena y los sonidos fx del juego en formato .ogg.

    • Data: Contiene .db como base de datos de jugadores. La tabla almacena estilo y modelo de barco, último nivel y nivel máximo, último puntaje y puntaje máximo.

    • Fonts: Diferentes .ttf para los estilos de fuente proporcionados por el juego.

    • Images: Tiene las imágenes .png y .jpg tipo hojas de sprite.

    • Scripts: Aquí están todos los códigos .py que utiliza el juego para generar los datos del código del juego.

      • controller: Controla todas las escenas a través de sus bucles principales. Les da los atributos que a su vez recoge de la escena anterior.
      • database: Clase DataBase donde conecta los datos del juego a la base de datos a través de las funciones CRUD.
      • documents: Guarda los documentos credits, history y guide en forma de string, se muestran en el menú principal del juego.
      • enemies: Clase Enemy que estructura todas las características de los enemigos. Hay 3 tipos de IA: patrulleros, velocistas y kamikazes.
      • environment: Contiene las clases Foreground, Background, Farground, Planet y Portal. Se encargan de la ambientación y acompañan el movimiento del jugador.
      • manager: Importador de todas las cargas de música, sonidos e imágenes del juego.
      • obstacles: Clase Meteor que estructura toda la funcionalidad de los meteoros.
      • players: Clase Player que estructura todas las características y funcionalidades del jugador según el estilo que elijas. Hay 3 estilos: Daño, Defensa y Curación.
      • scenes: Contiene las clases Main, Menu, Game y Record que heredan de la clase Scene. Se encargan de controlar el comportamiento del juego en cada escena.
      • settings: Guarda todas las constantes del juego. Los ajustes se especifican desde aquí.
      • tools: Contiene las clases Timer, Sprite_sheet, Button, Board, Bar, Keyboard, Canvas, Icon, HealthBar y Screen_fade. Se utilizan como herramientas y componentes accesorios.
      • weapons: Contiene las clases Bullet, Missile y Explosion. Tipos de armas que puede utilizar cualquier personaje. Explosion es una extensión de Missile.
    • main: Archivo .py como lanzador alternativo del juego.

  • commits: Archivo .md registra todos los commits del repositorio.

  • requirements: Archivo .txt registra los requisitos para abrir el juego: pygame v2.0.2.

  • run: Archivo .pyw es el lanzador principal del juego.

Owner
Seven-z01
Seven-z01
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Bort Companion code for the paper "Optimal Subarchitecture Extraction for BERT." Bort is an optimal subset of architectural parameters for the BERT ar

Alexa 461 Nov 21, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023