MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

Overview

MemStream

Implementation of

MemStream detects anomalies from a multi-aspect data stream. We output an anomaly score for each record. MemStream is a memory augmented feature extractor, allows for quick retraining, gives a theoretical bound on the memory size for effective drift handling, is robust to memory poisoning, and outperforms 11 state-of-the-art streaming anomaly detection baselines.

After an initial training of the feature extractor on a small subset of normal data, MemStream processes records in two steps: (i) It outputs anomaly scores for each record by querying the memory for K-nearest neighbours to the record encoding and calculating a discounted distance and (ii) It updates the memory, in a FIFO manner, if the anomaly score is within an update threshold β.

Demo

  1. KDDCUP99: Run python3 memstream.py --dataset KDD --beta 1 --memlen 256
  2. NSL-KDD: Run python3 memstream.py --dataset NSL --beta 0.1 --memlen 2048
  3. UNSW-NB 15: Run python3 memstream.py --dataset UNSW --beta 0.1 --memlen 2048
  4. CICIDS-DoS: Run python3 memstream.py --dataset DOS --beta 0.1 --memlen 2048
  5. SYN: Run python3 memstream-syn.py --dataset SYN --beta 1 --memlen 16
  6. Ionosphere: Run python3 memstream.py --dataset ionosphere --beta 0.001 --memlen 4
  7. Cardiotocography: Run python3 memstream.py --dataset cardio --beta 1 --memlen 64
  8. Statlog Landsat Satellite: Run python3 memstream.py --dataset statlog --beta 0.01 --memlen 32
  9. Satimage-2: Run python3 memstream.py --dataset satimage-2 --beta 10 --memlen 256
  10. Mammography: Run python3 memstream.py --dataset mammography --beta 0.1 --memlen 128
  11. Pima Indians Diabetes: Run python3 memstream.py --dataset pima --beta 0.001 --memlen 64
  12. Covertype: Run python3 memstream.py --dataset cover --beta 0.0001 --memlen 2048

Command line options

  • --dataset: The dataset to be used for training. Choices 'NSL', 'KDD', 'UNSW', 'DOS'. (default 'NSL')
  • --beta: The threshold beta to be used. (default: 0.1)
  • --memlen: The size of the Memory Module (default: 2048)
  • --dev: Pytorch device to be used for training like "cpu", "cuda:0" etc. (default: 'cuda:0')
  • --lr: Learning rate (default: 0.01)
  • --epochs: Number of epochs (default: 5000)

Input file format

MemStream expects the input multi-aspect record stream to be stored in a contains , separated file.

Datasets

Processed Datasets can be downloaded from here. Please unzip and place the files in the data folder of the repository.

  1. KDDCUP99
  2. NSL-KDD
  3. UNSW-NB 15
  4. CICIDS-DoS
  5. Synthetic Dataset (Introduced in paper)
  6. Ionosphere
  7. Cardiotocography
  8. Statlog Landsat Satellite
  9. Satimage-2
  10. Mammography
  11. Pima Indians Diabetes
  12. Covertype

Environment

This code has been tested on Debian GNU/Linux 9 with a 12GB Nvidia GeForce RTX 2080 Ti GPU, CUDA Version 10.2 and PyTorch 1.5.

Owner
Stream-AD
Streaming Anomaly Detection
Stream-AD
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023