Rotation Robust Descriptors

Overview

RoRD

Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching

Project Page | Paper link

pipeline

Evaluation and Datasets

Pretrained Models

Download models from Google Drive (73.9 MB) in the base directory.

Evaluating RoRD

You can evaluate RoRD on demo images or replace it with your custom images.

  1. Dependencies can be installed in a conda of virtualenv by running:
    1. pip install -r requirements.txt
  2. python extractMatch.py <rgb_image1> <rgb_image2> --model_file <path to the model file RoRD>
  3. Example:
    python extractMatch.py demo/rgb/rgb1_1.jpg demo/rgb/rgb1_2.jpg --model_file models/rord.pth
  4. This should give you output like this:

RoRD

pipeline

SIFT

pipeline

DiverseView Dataset

Download dataset from Google Drive (97.8 MB) in the base directory (only needed if you want to evaluate on DiverseView Dataset).

Evaluation on DiverseView Dataset

The DiverseView Dataset is a custom dataset consisting of 4 scenes with images having high-angle camera rotations and viewpoint changes.

  1. Pose estimation on single image pair of DiverseView dataset:
    1. cd demo
    2. python register.py --rgb1 <path to rgb image 1> --rgb2 <path to rgb image 2> --depth1 <path to depth image 1> --depth2 <path to depth image 2> --model_rord <path to the model file RoRD>
    3. Example:
      python register.py --rgb1 rgb/rgb2_1.jpg --rgb2 rgb/rgb2_2.jpg --depth1 depth/depth2_1.png --depth2 depth/depth2_2.png --model_rord ../models/rord.pth
    4. This should give you output like this:

RoRD matches in perspective view

pipeline

RoRD matches in orthographic view

pipeline

  1. To visualize the registered point cloud, use --viz3d command:
    1. python register.py --rgb1 rgb/rgb2_1.jpg --rgb2 rgb/rgb2_2.jpg --depth1 depth/depth2_1.png --depth2 depth/depth2_2.png --model_rord ../models/rord.pth --viz3d

PointCloud registration using correspondences

pipeline

  1. Pose estimation on a sequence of DiverseView dataset:
    1. cd evaluation/DiverseView/
    2. python evalRT.py --dataset <path to DiverseView dataset> --sequence <sequence name> --model_rord <path to RoRD model> --output_dir <name of output dir>
    3. Example:
      1. python evalRT.py --dataset /path/to/preprocessed/ --sequence data1 --model_rord ../../models/rord.pth --output_dir out
    4. This would generate out folder containing predicted transformations and matching results in out/vis folder, containing images like below:

RoRD

pipeline

Training RoRD on PhotoTourism Images

  1. Training using rotation homographies with initialization from D2Net weights (Download base models as mentioned in Pretrained Models).

  2. Download branderburg_gate dataset that is used in the configs/train_scenes_small.txt from here(5.3 Gb) in phototourism folder.

  3. Folder stucture should be:

    phototourism/  
    ___ brandenburg_gate  
    ___ ___ dense  
    ___ ___	___ images  
    ___ ___	___ stereo  
    ___ ___	___ sparse  
    
  4. python trainPT_ipr.py --dataset_path <path_to_phototourism_folder> --init_model models/d2net.pth --plot

TO-DO

  • Provide VPR code
  • Provide combine training of RoRD + D2Net
  • Provide code for calculating error in Diverseview Dataset

Credits

Our base model is borrowed from D2-Net.

BibTex

If you use this code in your project, please cite the following paper:

@misc{rord2021,
      title={RoRD: Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching}, 
      author={Udit Singh Parihar and Aniket Gujarathi and Kinal Mehta and Satyajit Tourani and Sourav Garg and Michael Milford and K. Madhava Krishna},
      year={2021},
      eprint={2103.08573},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022