[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Overview

Undistillable: Making A Nasty Teacher That CANNOT teach students

License: MIT

"Undistillable: Making A Nasty Teacher That CANNOT teach students"

Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang
In ICLR 2021 Spotlight Oral

Overview

  • We propose the concept of Nasty Teacher, a defensive approach to prevent knowledge leaking and unauthorized model cloning through KD without sacrificing performance.
  • We propose a simple yet efficient algorithm, called self-undermining knowledge distillation, to directly build a nasty teacher through self-training, requiring no additional dataset nor auxiliary network.

Prerequisite

We use Pytorch 1.4.0, and CUDA 10.1. You can install them with

conda install pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.1 -c pytorch

It should also be applicable to other Pytorch and CUDA versions.

Then install other packages by

pip install -r requirements.txt

Usage

Teacher networks

Step 1: Train a normal teacher network
python train_scratch.py --save_path [XXX]

Here, [XXX] specifies the directory of params.json, which contains all hyperparameters to train a network. We already include all hyperparameters in experiments to reproduce the results in our paper.

For example, normally train a ResNet18 on CIFAR-10

python train_scratch.py --save_path experiments/CIFAR10/baseline/resnet18

After finishing training, you will get training.log, best_model.tar in that directory.

The normal teacher network will serve as the adversarial network for the training of the nasty teacher.

Step 2: Train a nasty teacher network
python train_nasty.py --save_path [XXX]

Again, [XXX] specifies the directory of params.json, which contains the information of adversarial networks and hyperparameters for training.
You need to specify the architecture of adversarial network and its checkpoint in this file.

For example, train a nasty ResNet18

python train_nasty.py --save_path experiments/CIFAR10/kd_nasty_resnet18/nasty_resnet18

Knowledge Distillation for Student networks

You can train a student distilling from normal or nasty teachers by

python train_kd.py --save_path [XXX]

Again, [XXX] specifies the directory of params.json, which contains the information of student networks and teacher networks

For example,

  • train a plain CNN distilling from a nasty ResNet18
python train_kd.py --save_path experiments/CIFAR10/kd_nasty_resnet18/cnn
  • Train a plain CNN distilling from a normal ResNet18
python train_kd.py --save_path experiments/CIFAR10/kd_normal_resnet18/cnn

Citation

@inproceedings{
ma2021undistillable,
title={Undistillable: Making A Nasty Teacher That {\{}CANNOT{\}} teach students},
author={Haoyu Ma and Tianlong Chen and Ting-Kuei Hu and Chenyu You and Xiaohui Xie and Zhangyang Wang},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=0zvfm-nZqQs}
}

Acknowledgement

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023