Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Overview

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Yonghao Xu and Pedram Ghamisi


This research has been conducted at the Institute of Advanced Research in Artificial Intelligence (IARAI).

This is the official PyTorch implementation of the black-box adversarial attack methods for remote sensing data in our paper Universal adversarial examples in remote sensing: Methodology and benchmark.

Table of content

  1. Dataset
  2. Supported methods and models
  3. Preparation
  4. Adversarial attacks on scene classification
  5. Adversarial attacks on semantic segmentation
  6. Performance evaluation on the UAE-RS dataset
  7. Paper
  8. Acknowledgement
  9. License

Dataset

We collect the generated universal adversarial examples in the dataset named UAE-RS, which is the first dataset that provides black-box adversarial samples in the remote sensing field.

πŸ“‘ Download links:  Google Drive        Baidu NetDisk (Code: 8g1r)

To build UAE-RS, we use the Mixcut-Attack method to attack ResNet18 with 1050 test samples from the UCM dataset and 5000 test samples from the AID dataset for scene classification, and use the Mixup-Attack method to attack FCN-8s with 5 test images from the Vaihingen dataset (image IDs: 11, 15, 28, 30, 34) and 5 test images from the Zurich Summer dataset (image IDs: 16, 17, 18, 19, 20) for semantic segmentation.

Example images in the UCM dataset and the corresponding adversarial examples in the UAE-RS dataset.

Example images in the AID dataset and the corresponding adversarial examples in the UAE-RS dataset.

Qualitative results of the black-box adversarial attacks from FCN-8s β†’ SegNet on the Vaihingen dataset.

(a) The original clean test images in the Vaihingen dataset. (b) The corresponding adversarial examples in the UAE-RS dataset. (c) Segmentation results of SegNet on the clean images. (d) Segmentation results of SegNet on the adversarial images. (e) Ground-truth annotations.

Supported methods and models

This repo contains implementations of black-box adversarial attacks for remote sensing data on both scene classification and semantic segmentation tasks.

Preparation

  • Package requirements: The scripts in this repo are tested with torch==1.10 and torchvision==0.11 using two NVIDIA Tesla V100 GPUs.
  • Remote sensing datasets used in this repo:
  • Data folder structure
    • The data folder is structured as follows:
β”œβ”€β”€ <THE-ROOT-PATH-OF-DATA>/
β”‚   β”œβ”€β”€ UCMerced_LandUse/     
|   |   β”œβ”€β”€ Images/
|   |   |   β”œβ”€β”€ agricultural/
|   |   |   β”œβ”€β”€ airplane/
|   |   |   |── ...
β”‚   β”œβ”€β”€ AID/     
|   |   β”œβ”€β”€ Airport/
|   |   β”œβ”€β”€ BareLand/
|   |   |── ...
β”‚   β”œβ”€β”€ Vaihingen/     
|   |   β”œβ”€β”€ img/
|   |   β”œβ”€β”€ gt/
|   |   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ Zurich/    
|   |   β”œβ”€β”€ img/
|   |   β”œβ”€β”€ gt/
|   |   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ UAE-RS/    
|   |   β”œβ”€β”€ UCM/
|   |   β”œβ”€β”€ AID/
|   |   β”œβ”€β”€ Vaihingen/
|   |   β”œβ”€β”€ Zurich/
  • Pretraining the models for scene classification
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'alexnet' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'resnet18' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'inception' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
...
  • Pretraining the models for semantic segmentation
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'fcn8s' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'deeplabv2' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'segnet' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
...

Please replace <THE-ROOT-PATH-OF-DATA> with the local path where you store the remote sensing datasets.

Adversarial attacks on scene classification

  • Generate adversarial examples:
CUDA_VISIBLE_DEVICES=0 python attack_cls.py --surrogate_model 'resnet18' \
                                            --attack_func 'fgsm' \
                                            --dataID 1 \
                                            --root_dir <THE-ROOT-PATH-OF-DATA>
  • Performance evaluation on the adversarial test set:
CUDA_VISIBLE_DEVICES=0 python test_cls.py --surrogate_model 'resnet18' \
                                          --target_model 'inception' \
                                          --attack_func 'fgsm' \
                                          --dataID 1 \
                                          --root_dir <THE-ROOT-PATH-OF-DATA>

You can change parameters --surrogate_model, --attack_func, and --target_model to evaluate the performance with different attacking scenarios.

Adversarial attacks on semantic segmentation

  • Generate adversarial examples:
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python attack_seg.py --surrogate_model 'fcn8s' \
                                            --attack_func 'fgsm' \
                                            --dataID 1 \
                                            --root_dir <THE-ROOT-PATH-OF-DATA>
  • Performance evaluation on the adversarial test set:
CUDA_VISIBLE_DEVICES=0 python test_seg.py --surrogate_model 'fcn8s' \
                                          --target_model 'segnet' \
                                          --attack_func 'fgsm' \
                                          --dataID 1 \
                                          --root_dir <THE-ROOT-PATH-OF-DATA>

You can change parameters --surrogate_model, --attack_func, and --target_model to evaluate the performance with different attacking scenarios.

Performance evaluation on the UAE-RS dataset

  • Scene classification:
CUDA_VISIBLE_DEVICES=0 python test_cls_uae_rs.py --target_model 'inception' \
                                                 --dataID 1 \
                                                 --root_dir <THE-ROOT-PATH-OF-DATA>

Scene classification results of different deep neural networks on the clean and UAE-RS test sets:

UCM AID
Model Clean Test Set Adversarial Test Set OA Gap Clean Test Set Adversarial Test Set OA Gap
AlexNet 90.28 30.86 -59.42 89.74 18.26 -71.48
VGG11 94.57 26.57 -68.00 91.22 12.62 -78.60
VGG16 93.04 19.52 -73.52 90.00 13.46 -76.54
VGG19 92.85 29.62 -63.23 88.30 15.44 -72.86
Inception-v3 96.28 24.86 -71.42 92.98 23.48 -69.50
ResNet18 95.90 2.95 -92.95 94.76 0.02 -94.74
ResNet50 96.76 25.52 -71.24 92.68 6.20 -86.48
ResNet101 95.80 28.10 -67.70 92.92 9.74 -83.18
ResNeXt50 97.33 26.76 -70.57 93.50 11.78 -81.72
ResNeXt101 97.33 33.52 -63.81 95.46 12.60 -82.86
DenseNet121 97.04 17.14 -79.90 95.50 10.16 -85.34
DenseNet169 97.42 25.90 -71.52 95.54 9.72 -85.82
DenseNet201 97.33 26.38 -70.95 96.30 9.60 -86.70
RegNetX-400MF 94.57 27.33 -67.24 94.38 19.18 -75.20
RegNetX-8GF 97.14 40.76 -56.38 96.22 19.24 -76.98
RegNetX-16GF 97.90 34.86 -63.04 95.84 13.34 -82.50
  • Semantic segmentation:
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python test_seg_uae_rs.py --target_model 'segnet' \
                                                 --dataID 1 \
                                                 --root_dir <THE-ROOT-PATH-OF-DATA>

Semantic segmentation results of different deep neural networks on the clean and UAE-RS test sets:

Vaihingen Zurich Summer
Model Clean Test Set Adversarial Test Set mF1 Gap Clean Test Set Adversarial Test Set mF1 Gap
FCN-32s 69.48 35.00 -34.48 66.26 32.31 -33.95
FCN-16s 69.70 27.02 -42.68 66.34 34.80 -31.54
FCN-8s 82.22 22.04 -60.18 79.90 40.52 -39.38
DeepLab-v2 77.04 34.12 -42.92 74.38 45.48 -28.90
DeepLab-v3+ 84.36 14.56 -69.80 82.51 62.55 -19.96
SegNet 78.70 17.84 -60.86 75.59 35.58 -40.01
ICNet 80.89 41.00 -39.89 78.87 59.77 -19.10
ContextNet 81.17 47.80 -33.37 77.89 63.71 -14.18
SQNet 81.85 39.08 -42.77 76.32 55.29 -21.03
PSPNet 83.11 21.43 -61.68 77.55 65.39 -12.16
U-Net 83.61 16.09 -67.52 80.78 56.58 -24.20
LinkNet 82.30 24.36 -57.94 79.98 48.67 -31.31
FRRNetA 84.17 16.75 -67.42 80.50 58.20 -22.30
FRRNetB 84.27 28.03 -56.24 79.27 67.31 -11.96

Paper

Universal adversarial examples in remote sensing: Methodology and benchmark

Please cite the following paper if you use the data or the code:

@article{uaers,
  title={Universal adversarial examples in remote sensing: Methodology and benchmark}, 
  author={Xu, Yonghao and Ghamisi, Pedram},
  journal={arXiv preprint arXiv:2202.07054},
  year={2022},
}

Acknowledgement

The authors would like to thank Prof. Shawn Newsam for making the UCM dataset public available, Prof. Gui-Song Xia for providing the AID dataset, the International Society for Photogrammetry and Remote Sensing (ISPRS), and the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) for providing the Vaihingen dataset, and Dr. Michele Volpi for providing the Zurich Summer dataset.

Efficient-Segmentation-Networks

segmentation_models.pytorch

Adversarial-Attacks-PyTorch

License

This repo is distributed under MIT License. The UAE-RS dataset can be used for academic purposes only.

Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, β€œImproving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
This is an unofficial implementation of the paper β€œStudent-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper β€œStudent-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

Cβš™G - Imperial College London 179 Jan 02, 2023
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip MΓΌller 10 Dec 07, 2022