Open Source Light Field Toolbox for Super-Resolution

Overview

BasicLFSR

BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection of papers on LF image SR and a benchmark to comprehensively evaluate the performance of existing methods. We also provided simple pipelines to train/valid/test state-of-the-art methods to get started quickly, and you can transform your methods into the benchmark.

Note: This repository will be updated on a regular basis, and the pretrained models of existing methods will be open-sourced one after another. So stay tuned!

Methods

Methods Paper Repository
LFSSR Light Field Spatial Super-Resolution Using Deep Efficient Spatial-Angular Separable Convolution. TIP2018 spatialsr/
DeepLightFieldSSR
resLF Residual Networks for Light Field Image Super-Resolution. CVPR2019 shuozh/resLF
HDDRNet High-Dimensional Dense Residual Convolutional Neural Network for Light Field Reconstruction. TPAMI2019 monaen/
LightFieldReconstruction
LF-InterNet Spatial-Angular Interaction for Light Field Image Super-Resolution. ECCV2019 YingqianWang/
LF-InterNet
LFSSR-ATO Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization. CVPR2020 jingjin25/
LFSSR-ATO
LF-DFnet Light field image super-resolution using deformable convolution. TIP2020 YingqianWang/
LF-DFnet
MEG-Net End-to-End Light Field Spatial Super-Resolution Network using Multiple Epipolar Geometry. TIP2021 shuozh/MEG-Net

Datasets

We used the EPFL, HCInew, HCIold, INRIA and STFgantry datasets for both training and test. Please first download our datasets via Baidu Drive (key:7nzy) or OneDrive, and place the 5 datasets to the folder ./datasets/.

  • After downloading, you should find following structure:

    ├──./datasets/
    │    ├── EPFL
    │    │    ├── training
    │    │    │    ├── Bench_in_Paris.mat
    │    │    │    ├── Billboards.mat
    │    │    │    ├── ...
    │    │    ├── test
    │    │    │    ├── Bikes.mat
    │    │    │    ├── Books__Decoded.mat
    │    │    │    ├── ...
    │    ├── HCI_new
    │    ├── ...
    
  • Run Generate_Data_for_Training.m to generate training data. The generated data will be saved in ./data_for_train/ (SR_5x5_2x, SR_5x5_4x).

  • Run Generate_Data_for_Test.m to generate test data. The generated data will be saved in ./data_for_test/ (SR_5x5_2x, SR_5x5_4x).

Benchmark

We benchmark several methods on above datasets, and PSNR and SSIM metrics are used for quantitative evaluation.

PSNR and SSIM values achieved by different methods for 2xSR:

Method Scale #Params. EPFL HCInew HCIold INRIA STFgantry Average
Bilinear x2 -- 28.479949/0.918006 30.717944/0.919248 36.243278/0.970928 30.133901/0.945545 29.577468/0.931030 31.030508/0.936951
Bicubic x2 -- 29.739509/0.937581 31.887011/0.935637 37.685776/0.978536 31.331483/0.957731 31.062631/0.949769 32.341282/0.951851
VDSR x2
EDSR x2 33.088922/0.962924 34.828374/0.959156 41.013989/0.987400 34.984982/0.976397 36.295865/0.981809
RCSN x2
resLF x2
LFSSR x2 33.670594/0.974351 36.801555/0.974910 43.811050/0.993773 35.279443/0.983202 37.943969/0.989818
LF-ATO x2 34.271635/0.975711 37.243620/0.976684 44.205264/0.994202 36.169943/0.984241 39.636445/0.992862
LF-InterNet x2
LF-DFnet x2
MEG-Net x2
LFT x2

PSNR and SSIM values achieved by different methods for 4xSR:

Method Scale #Params. EPFL HCInew HCIold INRIA STFgantry Average
Bilinear x4 -- 24.567490/0.815793 27.084949/0.839677 31.688225/0.925630 26.226265/0.875682 25.203262/0.826105 26.954038/0.856577
Bicubic x4 -- 25.264206/0.832389 27.714905/0.851661 32.576315/0.934428 26.951718/0.886740 26.087451/0.845230 27.718919/0.870090
VDSR x4
EDSR x4
RCSN x4
resLF x4
LFSSR x4
LF-ATO x4
LF-InterNet x4
LF-DFnet x4
MEG-Net x4
LFT x4

Train

  • Run train.py to perform network training. Example for training [model_name] on 5x5 angular resolution for 2x/4x SR:
    $ python train.py --model_name [model_name] --angRes 5 --scale_factor 2 --batch_size 8
    $ python train.py --model_name [model_name] --angRes 5 --scale_factor 4 --batch_size 4
    
  • Checkpoints and Logs will be saved to ./log/, and the ./log/ has following structure:
    ├──./log/
    │    ├── SR_5x5_2x
    │    │    ├── [dataset_name]
    │    │         ├── [model_name]
    │    │         │    ├── [model_name]_log.txt
    │    │         │    ├── checkpoints
    │    │         │    │    ├── [model_name]_5x5_2x_epoch_01_model.pth
    │    │         │    │    ├── [model_name]_5x5_2x_epoch_02_model.pth
    │    │         │    │    ├── ...
    │    │         │    ├── results
    │    │         │    │    ├── VAL_epoch_01
    │    │         │    │    ├── VAL_epoch_02
    │    │         │    │    ├── ...
    │    │         ├── [other_model_name]
    │    │         ├── ...
    │    ├── SR_5x5_4x
    

Test

  • Run test.py to perform network inference. Example for test [model_name] on 5x5 angular resolution for 2x/4xSR:

    $ python test.py --model_name [model_name] --angRes 5 --scale_factor 2  
    $ python test.py --model_name [model_name] --angRes 5 --scale_factor 4 
    
  • The PSNR and SSIM values of each dataset will be saved to ./log/, and the ./log/ is following structure:

    ├──./log/
    │    ├── SR_5x5_2x
    │    │    ├── [dataset_name]
    │    │        ├── [model_name]
    │    │        │    ├── [model_name]_log.txt
    │    │        │    ├── checkpoints
    │    │        │    │   ├── ...
    │    │        │    ├── results
    │    │        │    │    ├── Test
    │    │        │    │    │    ├── evaluation.xls
    │    │        │    │    │    ├── [dataset_1_name]
    │    │        │    │    │    │    ├── [scene_1_name]
    │    │        │    │    │    │    │    ├── [scene_1_name]_CenterView.bmp
    │    │        │    │    │    │    │    ├── [scene_1_name]_SAI.bmp
    │    │        │    │    │    │    │    ├── views
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_0_0.bmp
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_0_1.bmp
    │    │        │    │    │    │    │    │    ├── ...
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_4_4.bmp
    │    │        │    │    │    │    ├── [scene_2_name]
    │    │        │    │    │    │    ├── ...
    │    │        │    │    │    ├── [dataset_2_name]
    │    │        │    │    │    ├── ...
    │    │        │    │    ├── VAL_epoch_01
    │    │        │    │    ├── ...
    │    │        ├── [other_model_name]
    │    │        ├── ...
    │    ├── SR_5x5_4x
    

Recources

We provide some original super-resolved images and useful resources to facilitate researchers to reproduce the above results.

Other Recources

Contact

Any question regarding this work can be addressed to [email protected].

Owner
Squidward
Squidward
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022