Implementations of CNNs, RNNs, GANs, etc

Overview

Tensorflow Programs and Tutorials

This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also contain some experiments on cool papers that I read. Hopefully, the notebooks will be helpful to anyone reading!

  • CNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy.

  • Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.

  • Convolutional Neural Networks - This notebook goes through a simple convolutional neural network implementation in Tensorflow. The model is very similar to the own described in the Tensorflow docs. Hopefully this notebook can give you a better understanding of what is necessary to create and train your own CNNs. For a more conceptual view of CNNs, check out my introductory blog post on them.

  • Generative Adversarial Networks - This notebook goes through the creation of a generative adversarial network. GANs are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.For more of a conceptual view of GANs, check out my blog post.

  • Linear and Logistic Regression - This notebook shows you how Tensorflow is not just a deep learning library, but is a library centered on numerical computation, which allows you to create classic machine learning models relatively easily. Linear regression and logistic regression are two of the most simple, yet useful models in all of machine learning.

  • Simple Neural Networks - This notebook shows you how to create simple 1 and 2 layer neural networks. We'll then see how these networks perform on MNIST, and look at the type of hyperparamters that affect a model's accuracy (network architecture, weight initialization, learning rate, etc)

  • Math in Tensorflow - This notebook introduces you to variables, constants, and placeholders in Tensorflow. It'll go into describing sessions, and showinng you how to perform typical mathematical operations and deal with large matrices.

  • Question Pair Classification with RNNs (Work in Progress) - This notebook looks at the newly released question pair dataset released by Quora a little earlier this year. It looks at the ways in which you can build a machine learning model to predict whether two sentences are duplicates of one another. Before running this notebook, it's very important to extract all the data. We'll run the following command to get our word vectors and training/testing matrices.

    tar -xvzf Data/Quora/QuoraData.tar.gz
  • SELU Nonlinearity - A recent paper titled "Self Normalizing Neural Networks" started getting a lot of buzz starting in June 2017. The main contribution of the paper was this new nonlinear activation function called a SELU (scaled exponential linear unit). We'll be looking at how this function performs in practice with simple neural nets and CNNs.

  • Sentiment Analysis with LSTMs - In this notebook, we'll be looking at how to apply deep learning techniques to the task of sentiment analysis. Sentiment analysis can be thought of as the exercise of taking a sentence, paragraph, document, or any piece of natural language, and determining whether that text's emotional tone is positive, negative or neutral. We'll look at why RNNs and LSTMs are the most popular choices for handling natural language processing tasks. Be sure to run the following commands to get our word vectors and training data.

    tar -xvzf Data/Sentiment/models.tar.gz
    tar -xvzf Data/Sentiment/training_data.tar.gz
  • Universal Approximation Theorem (Work in Progress) - The Universal Approximation Theorem states that any feed forward neural network with a single hidden layer can model any function. In this notebook, I'll go through a practical example of illustrating why this theorem works, and talk about what the implications are for when you're training your own neural networks. cough Overfitting cough

  • Learning to Model the XOR Function (Work in Progress) - XOR is one of the classic functions we see in machine learning theory textbooks. The significance is that we cannot fit a linear model to this function no matter how hard we try. In this notebook, you'll see proof of that, and you'll see how adding a simple hidden layer to the neural net can solve the problem.

Owner
Adit Deshpande
Engineering at Forward | UCLA CS '19
Adit Deshpande
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022