A visualization tool to show a TensorFlow's graph like TensorBoard

Overview

tfgraphviz

GitHub license

tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visualization of tensorflow graph on Jupyter Notebook without TensorBoard.

Links

Installation

Use pip to install:

$ pip install graphviz
$ pip install tfgraphviz

The only dependency is Graphviz.

macOS:

$ brew install graphviz

Ubuntu:

$ apt-get install graphviz

Quickstart

import tensorflow as tf
import tfgraphviz as tfg

g = tf.Graph()
with g.as_default():
    a = tf.constant(1, name="a")
    b = tf.constant(2, name="b")
    c = tf.add(a, b, name="add")
tfg.board(g)

https://raw.githubusercontent.com/akimach/tfgraphviz/master/img/graph.jpg

License

This package is distributed under the MIT license.

Author

Akimasa KIMURA

Comments
  • Add Binder support

    Add Binder support

    To get the example working in Binder the only required pip installable package is tensorflow and from apt-get is graphviz. The postBuild will install tfgraphviz from GitHub so that it always gets the master HEAD, so that if there is something broken for a bit on PyPI it won't continue to be a problem until a new release is made.

    opened by matthewfeickert 2
  • added pan and zoom support for jupyter

    added pan and zoom support for jupyter

    Added tfg.jupyter_pan_and_zoom helper to wrap generated SVG object In order to enable pan and zoom functionality in Jupyter:

    tfg.jupyter_pan_and_zoom(tfg.board(graph))
    

    Tested in JupyterLab and Colab.

    opened by vlasenkoalexey 1
  • Extending functionality

    Extending functionality

    • Added proper tooltips
    • Fixed logic to render function names to check op type, not op name
    • Added ability to override functions to create digraph, node and edge like:
    def custom_add_digraph_node(digraph, name, op, attributes=None):
        attributes=[]
        if op is not None and 'PartitionedCall' in op.type:
            attributes.append(('fillcolor', 'blue'))
        tfg.add_digraph_node(digraph, name, op, attributes)
    
    tfg.board(tf_g, depth=10, name_regex=".*", add_digraph_node_func=custom_add_digraph_node)
    
    opened by vlasenkoalexey 1
  • For Python3.x

    For Python3.x

    Fixed to work on Python 3.x:

    • Change IMPLICIT relative imports (from graphviz_wrapper import board) to EXPLICIT relative imports (from .graphviz_wrapper import board).
    • (In addition, ) remove unnecessary imports.

    Checked to work both Python 2.7.x/3.5.x with TensorFlow 1.0.

    opened by antimon2 1
  • UnicodeDecodeError on loading the graph.

    UnicodeDecodeError on loading the graph.

    I am getting the following error. Is unicode in tf variable/scope names not supported?

    <ipython-input-2-b2099ef84663> in load(self)
        143         # sess = tf.Session(graph=tf.get_default_graph())
        144         self.sess.run(self.init)
    --> 145         g = tfg.board(tf.get_default_graph())
        146         g.view()
        147         self.saver.restore(self.sess, model_path)
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/tfgraphviz/graphviz_wrapper.pyc in board(tfgraph, depth, name, style)
        212     _node_inpt_table, _node_inpt_shape_table = node_input_table(tfgraph, depth=depth)
        213     digraph = add_nodes(_node_table, name=name, style=style)
    --> 214     digraph = add_edges(digraph, _node_inpt_table, _node_inpt_shape_table)
        215     return digraph
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/tfgraphviz/graphviz_wrapper.pyc in add_edges(digraph, node_inpt_table, node_inpt_shape_table)
        195             else:
        196                 shape = node_inpt_shape_table[ni]
    --> 197                 digraph.edge(ni, node, label=edge_label(shape))
        198     return digraph
        199 
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/graphviz/dot.pyc in edge(self, tail_name, head_name, label, _attributes, **attrs)
        145         head_name = self._quote_edge(head_name)
        146         attr_list = self._attr_list(label, attrs, _attributes)
    --> 147         line = self._edge % (tail_name, head_name, attr_list)
        148         self.body.append(line)
        149 
    
    UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 10: ordinal not in range(128)
    
    opened by malarinv 0
Releases(0.0.8)
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022