Deep Probabilistic Programming Course @ DIKU

Overview

Syllabus

Part I - Introduction to Deep Probabilistic Programming

Week Topic Exercise Links
1 Introduction to Bayesian Inference Read Pattern Recognition and Machine Learning (PRML), Sections 1.1-1.3, 1.5-1.6 & 2-2.3.4 (inclusive ranges), Intro to Bayesian updating paper, and Pyro paper.

Form up groups and ask a question for each chapter/paper you have read.
Pattern Recognition and Machine Learning

Bayesian Updating Paper

Pyro Paper
2 Variational Inference Read the Variational Inference paper and Pyro tutorials on Stochastic Variational Inference (SVI). Ask three questions about them.

Use Pyro’s Variational Inference support to implement the kidney cancer model. See worksheet and Bayesian Data Analysis 3rd Edition (BDA3) Section 2.7.
Variational Inference Paper

Worksheet

Bayesian Data Analysis

Pyro SVI tutorial: Part I and Part II

Pyro Website
3 Hamiltonian Monte Carlo Read paper on Hamiltonian Monte Carlo and blog post on gradient-based Markov Chain Monte Carlo (MCMC). Look at the source code for Mini-MC.

Ask a question each for HMC, the Mini-MC implementation and discrete variable marginalization.

Implement Bayesian Change-point model in Pyro using NUTS.
Hamiltonian Monte Carlo Paper

Gradient-based MCMC

Mini-MC implementation

Change-point model

Pyro NUTS Example
4 Hidden Markov Models and Discrete Variables. Read Paper on Hidden Markov Models and ask three questions about it.

Read Pyro tutorials on Discrete Variables and Gaussian Mixture Models.

Read Pyro Hidden Markov Model code example and describe in your own words what the different models do.

Add amino acid prediction output to the TorusDBN HMM and show that the posterior predictive distribution of the amino acids matches the one found in data.
Hidden Markov Models

Pyro Discrete Variables Tutorial

Pyro Gaussian Mixture Model Tutorial

Pyro Hidden Markov Model Example

TorusDBN

Optional: Epidemological Inference via HMC
5 Bayesian Regression Models Read PRML Chapter 3 on Linear Models.

Ask 3 questions about the chapter.

Read the Pyro tutorials on Bayesian Regression.

Solve the weather check exercise in the worksheet.
Pyro Bayesian Regression: Part I, Part II

Worksheet
6 Variational Auto-Encoders Read Variational Auto Encoders (VAE) foundations Chapters 1 & 2, and Pyro tutorial on VAE. Ask three questions about the paper and tutorial.

Implement Frey Faces model from VAE paper in Pyro. Rely on the existing VAE implementation (see tutorial link).
Variational Auto Encoders Foundations

Pyro Tutorial on VAE
7 Deep Generative Models Read one of these papers: Interpretable Representation VAE, Causal Effect VAE, Deep Markov Model or DRAW (one paper per group).

Try out the relevant Pyro or PyTorch implementation on your choice of relevant dataset which was not used in the paper.

Make a small (10 minute) presentation about the paper and your experiences with the implementation.
Deep Markov Model

Interpretable Representation VAE

Causal Effect VAE

DRAW

Part II - Deep Probabilistic Programming Project

The second part of the course concerns applying the techniques learned in the first part, as a project solving a practical problem. We have several types of projects depending on the interests of the student.

For those interested in boosting their CV and potentially getting a student job, we warmly recommend working with one of our industrial partners on a suitable probabilistic programming project. For those interested in working with a more academic-oriented project, we have different interesting problems in Computer Science and Biology.

Industrial Projects

Company Area Ideas
 Relion Shift-planning AI Shift planning based on worker availability, historical sales data, weather and holidays.

Employee satisfaction quantification based on previously assigned shifts.

Employee shift assignment based on wishes and need
Paperflow Invoice Recognition AI Talk to us
Hypefactors Media and Reputation Tracking AI Talk to us
‹Your Company› ‹Your Area› Interested in collaboration with our group? contact Ahmad Salim to hear more!

Academic Projects

Type Description Notes/Links
Computer Science Implement a predictive scoring model for your favourite sports game, inspired by FiveThirtyEight. FiveThirtyEight Methodology and Models
Computer Science  Implement a ranking system for your favourite video or board game, inspired by Microsoft TrueSkill. Microsoft TrueSkill Model

Can be implemented in Infer.NET using Expectation Propagation
Computer Science Use Inference Compilation in PyProb to implement a CAPTCHA breaker or a Spaceship Generator Inference Compilation and PyProb. You can use the experimental PyProb bindings for Java.

CAPTCHA breaking with Oxford CAPTCHA Generator.

Spaceship Generator
Computer Science Implement asterisk corrector suggested by XKCD XKCD #2337: Asterisk Correction
Computer Science Implement an inference compilation based program-testing tool like QuickCheck or SmallCheck Inference Compilation

QuickCheck

SmallCheck
Computer Science Magic: The Gathering, Automated Deck Construction. Design a model that finds a good deck automatically based on correlations in existing deck design. Ideas like card substitution models could be integrated too. Magic: The Gathering - Meta Site
Computer Science Use probabilistic programming to explore ideas for solving Eternity II (No $2 million prize anymore, but still interesting from a math point of view) Eternity II
Biology Auto-Encoders or Deep Markov Models for Protein Folding Deep Markov Model

Pyro Deep Markov Model
Biology Inference Compilation for Ancestral Reconstruction Inference Compilation and PyProb. Talk to us for details.
Biology Recurrent Causal Effect VAE for modelling mutations in proteins Talk to us for details.

Recommendations

  • Sometimes sampling can be slow on the CPU for complex models, so try using Google Colab and GPUs and see if that provides an improvement.

Acknowledgements

This course has been developed by Thomas Hamelryck and Ahmad Salim Al-Sibahi. Thanks to Ola Rønning for suggesting the Variational Auto Encoders Foundations paper instead of Auto-Encoding Variational Bayes which we originally proposed to read on week 3. Thanks to Richard Michael for testing out the course and provide us with valuable feedback on the content!

A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022