Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Related tags

Deep LearningGeMCL
Overview




Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

In this repository we provide PyTorch implementations for GeMCL; a generative approach for meta-continual learning. The directory outline is as follows:

root
 ├── code                 # The folder containing all pytorch implementations
       ├── datasets           # The path containing Dataset classes and train/test parameters for each dataset
            ├── omnigolot
                  ├── TrainParams.py  # omniglot training parameters configuration
                  ├── TestParams.py   # omniglot testing parameters configuration

            ├── mini-imagenet
                  ├── TrainParams.py  # mini-imagenet training parameters configuration
                  ├── TestParams.py   # mini-imagenet testing parameters configuration
            ├── cifar
                  ├── TrainParams.py  # cifar 100 training parameters configuration
                  ├── TestParams.py   # cifar 100 testing parameters configuration

       ├── model              # The path containing proposed models
       ├── train.py           # The main script for training
       ├── test.py            # The main script for testing
       ├── pretrain.py        # The main script for pre-training

 ├── datasets             # The location in which datasets are placed
       ├── omniglot
       ├── miniimagenet
       ├── cifar

 ├── experiments          # The location in which accomplished experiments are stored
       ├── omniglot
       ├── miniimagenet
       ├── cifar

In the following sections we will first provide details about how to setup the dataset. Then the instructions for installing package dependencies, training and testing is provided.

Configuring the Dataset

In this paper we have used Omniglot, CIFAR-100 and Mini-Imagenet datasets. The omniglot and cifar-100 are light-weight datasets and are automatically downloaded into datasets/omniglot/ or datasets/cifar/ whenever needed. however the mini-imagenet dataset need to be manually downloaded and placed in datasets/miniimagenet/. The following instructions will show how to properly setup this dataset:

  • First download the images from this link (provided by the owners) and the train.csv,val.csv,test.csv splits from this link.

  • Extract and place the downloaded files directly under datasets/miniimagenet/. (We expect to have train.csv, val.csv, test.csv and images folder under this path)

Reading directly from the disk every time we need this dataset is an extremely slow procedure. To solve this issue we use a preprocessing step, in which the images are first shrinked to 100 pixels in the smaller dimension (without cahnging the aspect ratio), and then converted to numpy npy format. The code for this preprocessing is provided in code directory and should be executed as follows:

cd code
python genrate_img.py ../datasets/miniimagenet ../datasets/miniimagenet

Wait until the success message for test, train and validation appears and then we are ready to go.

Installing Prerequisites

The following packages are required:

  • opencv-python==4.5.1
  • torch==1.7.1+cu101
  • tensorboard==2.4.1
  • pynvml==8.0.4
  • matplotlib==3.3.2
  • tqdm==4.55.1
  • scipy==1.6.0
  • torchvision==0.8.2+cu101

Training and Testing

The first step for training or testing is to confgure the desired parameters. We have seperated the training/testing parameters for each dataset and placed them under code/datasets/omniglot and code/datasets/miniimagenet. For example to change the number of meta-training episodes on omniglot dataset, one may do as following:

  • Open code/datasets/omniglot/TrainParams.py

  • Find the line self.meta_train_steps and change it's value.

Setting the training model is done in the same way by changing self.modelClass value. We have provided the following models in the code/model/ path:

file path model name in the paper
code/model/Bayesian.py GeMCL predictive
code/model/MAP.py GeMCL MAP
code/model/LR.py MTLR
code/model/PGLR.py PGLR
code/model/ProtoNet.py Prototypical

Training Instructions

To perform training first configure the training parameters in code/datasets/omniglot/TrainParams.py or code/datasets/miniimagenet/TrainParams.py for omniglot and mini-magenet datasets respectively. In theese files, self.experiment_name variable along with a Date prefix will determine the folder name in which training logs are stored.

Now to start training run the following command for omniglot (In all our codes the M or O flag represents mini-imagene and omniglot datasets respectively):

cd code
python train.py O

and the following for mini-imagenet:

cd code
python train.py M

The training logs and checkpoints are stored in a folder under experiments/omniglot/ or experiments/miniimagenet/ with the name specified in self.experiment_name. We have already attached some trained models with the same settings reported in the paper. The path and details for these models are as follows:

Model Path Details
experiments/miniimagenet/imagenet_bayesian_final GeMCL predictive trained on mini-imagenet
experiments/miniimagenet/imagenet_map_final GeMCL MAP trained on mini-imagenet
experiments/miniimagenet/imagenet_PGLR_final PGLR trained on mini-imagenet
experiments/miniimagenet/imagenet_MTLR_final MTLR trained on mini-imagenet
experiments/miniimagenet/imagenet_protonet_final Prototypical trained on mini-imagenet
experiments/miniimagenet/imagenet_pretrain_final pretrained model on mini-imagenet
experiments/miniimagenet/imagenet_Bayesian_OMLBackbone GeMCL predictive trained on mini-imagenet with OML backbone
experiments/miniimagenet/imagenet_random random model compatible to mini-imagenet but not trained previously
experiments/omniglot/omniglot_Bayesian_final GeMCL predictive trained on omniglot
experiments/omniglot/omniglot_MAP_final GeMCL MAP trained on omniglot
experiments/omniglot/omniglot_PGLR_final PGLR trained on omniglot
experiments/omniglot/omniglot_MTLR_final MTLR trained on omniglot
experiments/omniglot/omniglot_Protonet_final Prototypical trained on omniglot
experiments/omniglot/omniglot_Pretrain_final pretrained model on omniglot
experiments/omniglot/Omniglot_Bayesian_OMLBackbone GeMCL predictive trained on omniglot with OML backbone
experiments/omniglot/omniglot_random random model compatible to omniglot but not trained previously
experiments/omniglot/omniglot_bayesian_28 GeMCL predictive trained on omniglot with 28x28 input

Testing Instructions

To evaluate a previously trained model, we can use test.py by determining the path in which the model was stored. As an example consider the following structure for omniglot experiments.

root
 ├── experiments
       ├── omniglot
            ├── omniglot_Bayesian_final

Now to test this model run:

cd code
python test.py O ../experiments/omniglot/omniglot_Bayesian_final/

At the end of testing, the mean accuracy and std among test epsiodes will be printed.

Note: Both test.py and train.py use TrainParams.py for configuring model class. Thus before executing test.py make sure that TrainParams.py is configured correctly.

Pre-training Instructions

To perform a preitraining you can use

cd code
python pretrain.py O

The pre-training configuarations are also available in TrainParams.py.

References

Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023