Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Overview

Randstad Artificial Intelligence Challenge (powered by VGEN)

Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Struttura directory del progetto

  • directory input:

  • directory output:

    • best_model.joblib: il migliore modello addestrato (su Windows), salvato con la libreria joblib
    • best_predictions.csv: file CSV delle predizioni del miglior modello sul test set, contenente le colonne Job_description, Label_true e Label_pred; il separatore è“;”(assente per motivi di copyright)
  • directory principale:

    • esplorazione_scelta_modello.ipynb: il notebook python che descrive il percorso di esplorazione e scelta del migliore modello machine learning
    • esplorazione_scelta_modello.html: esportazione in formato HTML del suddetto notebook
    • logo.jpg: logo della competizione
    • readme.md: questa guida
    • requirements.txt: le librerie python da installare per riprodurre l'ambiente di addestramento/predizione
    • slides.pdf: la presentazione della soluzione proposta
    • train_model_windows.py: versione Windows dello script python che consente di ripetere l'addestramento, la valutazione del modello, il salvataggio del modello e la scrittura del CSV con le predizioni
    • train_model_linux.py: versione Linux dello script python di addestramento
    • utils.py: modulo python contenente alcune funzioni necessarie per il training e la predizione
    • try_best_model.py: script python di esempio che mostra come caricare il modello salvato e usarlo per nuove predizioni

Preparazione dell'ambiente di esecuzione

Per eseguire gli script, è necessario Python>=3.6. Si consiglia di preparare l’ambiente di esecuzione mediante i seguenti passaggi:

  1. scaricamento del repository
  2. a partire dalla directory principale, creazione di un python virtual environment con il comando
    python3 -m venv venv
  3. attivazione del virtual environment
    • windows
      venv\Scripts\activate
    • linux
      source venv/bin/activate
  4. installazione delle librerie necessarie con il comando
    pip install -r requirements.txt

Esecuzione degli script

  • try_best_model è uno script python di esempio che mostra come caricare il migliore modello salvato e usarlo per nuove predizioni si lancia con la sintassi
    python try_best_model.py
  • Lo script train_model lancia l’addestramento del modello, seguito dalla stampa delle metriche valutate sul test set e può essere eseguito con la sintassi
    • Windows
      python train_model_windows.py
    • Linux
      python train_model_linux.py

      Possono essere specificati i parametri: --save-model (oppure -s), che salva il modello appena addestrato nella directory output, con un nome file indicante data e ora --get-predictions (oppure -p), che genera le predizioni sul test set in formato csv e le salva nella directory di output, con un nome file indicante data e ora

Nota

A causa di un bug noto di numpy, l'addestramento dei modelli su Windows e Linux non è completamente identico e, a parità di parametri e random state, produce modelli leggermenti diversi, con effetti sulle performance (F1).

Si è cercato il più possibile di ottenere modelli con performance vicine nei due sistemi operativi (facendo variare il random state).

Il migliore modello è stato addestrato in ambiente Windows ed è salvato come best_model.joblib. Le predizioni migliori (best_predictions.csv) sono relative a questo modello. Usando lo script fornito (train_model_windows.py), il modello può essere riaddestrato rapidamente (pochi secondi) in ambiente Windows. Anche se addestrato su Windows, può essere correttamente impiegato su Linux per la predizione.

Il modello per Linux, addestrabile con l’apposito script (train_model_linux.py), è molto simile a quello per Windows: le differenze riscontrabili a livello di performance (F1) sono inferiori a 0.001.

Attenzione: usando lo script di addestramento per Windows in ambiente Linux o viceversa, non si ottengono errori di esecuzione, ma il modello addestrato mostra delle performance qualitative (F1) inferiori a quelle attese.

Owner
Stefano Fiorucci
Machine learning engineer, Python developer
Stefano Fiorucci
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022