Parameterising Simulated Annealing for the Travelling Salesman Problem

Overview

Parameterising Simulated Annealing for the Travelling Salesman Problem

animated

Abstract

The Travelling Salesman Problem is a well known NP-Hard problem. Given a list of cities, find the shortest path that visits all cities once.

Simulated annealing is a well known stochastic method for solving optimisation problems and is a well known non-exact algorithm for solving the TSP. However, it's effectiveness is dependent on initial parameters such as the starting temperature and cooling rate which is often chosen empirically.

The goal of this project is to:

  • Determine if the optimal starting temperature and cooling rate can be parameterised off the input
  • Visualise the solving process of the TSP

Usage

Running the code

Examples of common commands to run the files are shown below. However, both src/main.py and src/benchmark.py have a --help that explains the optional flags.

# To visualise annealing on a problem set from the input file
python3 -m src.main -f <input_file>

# To visualise TSP on a random graph with 
   
     number of cities
   
python3 -m src.main -c <city_count>

# Benchmark the parameters using all problems in the data folder
python3 -m src.benchmark

Keyboard Controls

There are also ways to control the visualisation through key presses while it plays.

Key Action
Space Bar Pauses or unpauses the solver
Left / Right arrow Control how frequently the frame is redrawn
c Toggles showing the cities as nodes (this is off by default as it causes lag)

Creating your own model

If you would like to create your own instance of the TSP problem and visualise it:

  1. Create a new file
  2. Within this file ensure you have the line NODE_COORD_SECTION, and below that EOF.
  3. Between those two lines, you can place the coordinates of the cities, i.e. for the nth city, have a line like , where x and y are the x and y coordinates of the city.
  4. Run python3 -m src.main -f , where is the path to the file you have just made.

Files

File / Folder Purpose
data This contains TSP problems in .tsp files and their optimal solution in .opt.tour files, taken from TSPLIB
report The report detailing the Simulated Annealing and the experimentation
results The output directory containing results of the tests
src/benchmark.py Code for benchmarking different temperatures and cooling rates using the problems in the data folder
src/main.py Driver code to start the visualisation
src/setup.py Code for loading in city coordinates from a file, or generating random ones
src/solvers.py Module containing the python implementations of TSP solving algorithms

FAQ

What do you use to generate the graphics?

This project uses the p5py library for visualisation. Unfortunately, (to of my knowledge) this may not work with WSL.

What are the results of your research?

Idk. Still working on it.

What can I do to contribute?

Pog.

This is more of a "what I would I do if I have more time" but whatever, let's say you actually are interested. Disclaimer - the code isn't particularly polished (from me pivoting project ideas multiple times).

  • If you're up for a challenge, it would be interesting to implement LKH (Lin-Kernighan heuristic) efficiently
  • Implement other algorithms - they just need to extend the Solver abstract class to work with the frontend
  • Add a whatever city you want and it's coordinates to data/world.tsp!
Owner
Gary Sun
hi
Gary Sun
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022