Hera is a Python framework for constructing and submitting Argo Workflows.

Overview

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus, and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

License: MIT

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Python functions are first class citizens in Hera - they are the atomic units (execution payload) that are submitted for remote execution. The framework makes it easy to wrap execution payloads into Argo Workflow tasks, set dependencies, resources, etc.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Assumptions

Hera is exclusively dedicated to remote workflow submission and execution. Therefore, it requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

In the future some of these assumptions may either increase or decrease depending on the direction of the project. Hera is mostly designed for practical data science purposes, which assumes the presence of a DevOps team to set up an Argo server for workflow submission.

Installation

There are multiple ways to install Hera:

  1. You can install from PyPi:
pip install hera-workflows
  1. Install it directly from this repository using:
python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed
  1. Alternatively, you can clone this repository and then run the following to install:
python setup.py install

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by pipenv:

pipenv shell
pipenv sync --dev --pre

Also, see the contributing guide!

Concepts

Currently, Hera is centered around two core concepts. These concepts are also used by Argo, which Hera aims to stay consistent with:

  • Task - the object that holds the Python function for remote execution/the atomic unit of execution;
  • Workflow - the higher level representation of a collection of tasks.

Examples

A very primitive example of submitting a task within a workflow through Hera is:

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    """
    This can be anything as long as the Docker image satisfies the dependencies. You can import anything Python 
    that is in your container e.g torch, tensorflow, scipy, biopython, etc - just provide an image to the task!
    """
    print(message)


ws = WorkflowService('my-argo-domain.com', 'my-argo-server-token')
w = Workflow('my-workflow', ws)
t = Task('say', say, [{'message': 'Hello, world!'}])
w.add_task(t)
w.submit()

Examples

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

Hera Couler Argo Python DSL

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    print(message)


ws = WorkflowService('my-argo-server.com', 'my-auth-token')
w = Workflow('diamond', ws)
a = Task('A', say, [{'message': 'This is task A!'}])
b = Task('B', say, [{'message': 'This is task B!'}])
c = Task('C', say, [{'message': 'This is task C!'}])
d = Task('D', say, [{'message': 'This is task D!'}])

a.next(b).next(d)  # a >> b >> d
a.next(c).next(d)  # a >> c >> d

w.add_tasks(a, b, c, d)
w.submit()

B [lambda: job(name="A"), lambda: job(name="C")], # A -> C [lambda: job(name="B"), lambda: job(name="D")], # B -> D [lambda: job(name="C"), lambda: job(name="D")], # C -> D ] ) diamond() submitter = ArgoSubmitter() couler.run(submitter=submitter) ">
import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="B") @dependencies(["A"]) def B(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="C") @dependencies(["A"]) def C(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="D") @dependencies(["B", "C"]) def D(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @template @inputs.parameter(name="message") def echo(self, message: V1alpha1Parameter) -> V1Container: container = V1Container( image="alpine:3.7", name="echo", command=["echo", "{{inputs.parameters.message}}"], ) return container ">
from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Owner
argoproj-labs
argoproj-labs
More routines for operating on iterables, beyond itertools

More Itertools Python's itertools library is a gem - you can compose elegant solutions for a variety of problems with the functions it provides. In mo

2.8k Jan 02, 2023
Addon for Blender 2.8+ that automatically creates NLA tracks for all animations. Useful for GLTF export.

PushDownAll An addon for Blender 2.8+ that runs Push Down on all animations, creating NLA tracks for each. This is useful if you have an object with m

Cory Petkovsek 16 Oct 06, 2022
Inviare messaggi tramite app IO a partire da dati contenuti in file .csv

parlaConIO Inviare messaggi tramite app IO a partire da dati contenuti in file .csv -- Nessun obbligo, ma in caso di clonazione o uso del programma c

Francesco Del Castillo 6 Aug 22, 2022
Prophet is a tool to discover resources detailed for cloud migration, cloud backup and disaster recovery

Prophet is a tool to discover resources detailed for cloud migration, cloud backup and disaster recovery

22 May 31, 2022
A dead-simple service that notifies you when something goes down.

Totmannschalter Totmannschalter (German for dead man's switch) is a simple service that notifies you when it has not received any message from a servi

1 Dec 20, 2021
Pykeeb - A small Python script that prints out currently connected keyboards

pykeeb 🐍 ⌨️ A small Python script that detects and prints out currently connect

Jordan Duabe 1 May 08, 2022
CNKD - Minimalistic Windows ransomware written in Python

CNKD Minimalistic Windows ransomware written in Python (Still a work in progress

Alex 2 May 27, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Dec 30, 2022
Script de monitoramento das teclas do teclado, salvando todos os dados digitados em um arquivo de log juntamente com os dados de rede.

listenerPython Script de monitoramento das teclas do teclado, salvando todos os dados digitados em um arquivo de log juntamente com os dados de rede.

Vinícius Azevedo 4 Nov 27, 2022
Multifunctional Analysis of Regions through Input-Output

MARIO Multifunctional Analysis of Regions through Input-Output. (Documents) What is it MARIO is a python package for handling input-output tables and

14 Dec 25, 2022
A python library with various gambling and gaming classes

gamble is a simple library that implements a collection of some common gambling-related classes Features die, dice, d-notation cards, decks, hands pok

Jacobi Petrucciani 16 May 24, 2022
PyGo custom language, New but similar language programming

New but similar language programming. Now we are capable to program in a very similar language to Python but at the same time get the efficiency of Go.

Fernando Perez 4 Nov 19, 2022
Python Programmma DarkMap.py

DarkMap Python Programmma DarkMap.py O'rganish va rasmlarni ko'riosh https://drive.google.com/drive/folders/1l1zybs_0Zy9z_trZYz5R72WrwsE6mFOh?usp=shar

Og'abek 0 May 06, 2022
peace-performance (Rust) binding for python. To calculate star ratings and performance points for all osu! gamemodes

peace-performance-python Fast, To calculate star ratings and performance points for all osu! gamemodes peace-performance (Rust) binding for python bas

9 Sep 19, 2022
STAC in Jupyter Notebooks

stac-nb STAC in Jupyter Notebooks Install pip install stac-nb Usage To use stac-nb in a project, start Jupyter Lab (jupyter lab), create a new noteboo

Darren Wiens 32 Oct 04, 2022
⚡KiCad library containing footprints and symbols for inductive analog keyboard switches

Inductive Analog Switches This library contains footprints and symbols for inductive analog keyboard switches for use with the Texas Instruments LDC13

Elias Sjögreen 3 Jun 30, 2022
An unofficial opensource Pokemon cursor theme for Windows and Linux.

pokemon-cursor An unofficial opensource Pokemon cursor theme for Windows and Linux. Cursor Sizes 22 24 28 32 40 48 56 64 72 80 88 96 Colors Quick inst

Kaiz Khatri 72 Dec 26, 2022
📜Generate poetry with gcc diagnostics

gado (gcc awesome diagnostics orchestrator) is a wrapper of gcc that outputs its errors and warnings in a more poetic format.

Dikson Santos 19 Jun 25, 2022
It was created to conveniently respond to events such as donation, follow, and hosting using the Alert Box provided by twip to streamers

This library is not an official library of twip. It was created to conveniently respond to events such as donation, follow, and hosting using the Alert Box provided by twip to streamers.

junah201 8 Nov 19, 2022
You can change your mac address with this program.

1 - Warning! You can use this program with Kali Linux. Therefore if you don't install the Kali Linux. Firstly you need to install Kali Linux. 2 - Star

Mustafa Bahadır Doğrusöz 1 Jun 10, 2022